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Abstract
The three-tangle-dependence of Smax = max〈S〉, where S is a Svetlichny
operator, is explicitly derived when one party moves with a uniform acceleration
with respect to other parties in a generalized Greenberger–Horne–Zeilinger
and maximally slice states. The π -tangle-dependence of Smax is also derived
implicitly. From this dependence, we conjecture that multipartite entanglement
is not the only physical resource for quantum mechanical multipartite non-
locality.

PACS numbers: 03.67.Mn, 03.30.+p

(Some figures may appear in colour only in the online journal)

After Einstein–Podolsky–Rosen’s seminal paper [1], the unusual properties of quantum
correlations became a fundamental issue in quantum information theories. These unusual
properties become manifest if one examines the Bell inequality 〈B〉 � 2 [2] by making use
of bipartite quantum states. If this inequality is violated, then the non-locality of quantum
mechanics is guaranteed. As Gisin [3] showed, the Bell-type Clauser–Horner–Shimony–Holt
[4] inequality is violated for all pure entangled two-qubit states. This implies that quantum
mechanics really exhibits non-local correlations. More importantly, the amount of violation
〈B〉 − 2 increases when the two-qubit state is entangled more and more. This fact implies
that the origin of non-local correlations in quantum mechanics is an entanglement of quantum
states. This remarkable fact can be used to implement the quantum cryptography [5].

Although the relationship between non-locality and entanglement is manifest to a great
extent in a two-qubit system, it is not as straightforward exploring this relationship in a
multipartite system. Recently, however, understanding in this field has been slightly enhanced,
especially for a three-qubit system. In [6], the relationship between a Svetlichny inequality
[7], a Bell-type inequality in a tripartite system, and tripartite residual entanglement called a
three-tangle [8] was examined by using the generalized Greenberger–Horne–Zeilinger (GHZ)
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states |ψg〉 [9] and the maximally slice (MS) states |ψs〉 [10] defined as

|ψg〉 = cos θ1|000〉 + sin θ1|111〉 (1)

|ψs〉 = 1√
2
[|000〉 + |11〉{cos θ3|0〉 + sin θ3|1〉}].

The most remarkable fact found in [6] is that the τ (three-tangle)-dependence of Smax, the upper
bound of expectation value of the Svetlichny operator, for |ψg〉 is

Smax(ψg) =
{

4
√

1 − τ τ � 1/3
4
√

2τ τ � 1/3.
(2)

Since the Svetlichny inequality is 〈S〉 � 4, whose violation guarantees non-local correlations,
equation (2) shows that |ψg〉 really exhibits non-local correlations in the region τ > 1/2.
Unlike two-qubit states, however, Smax exhibits decreasing behaviour when τ � 1/3. This
fact suggests strongly that the quantum entanglement is not the only resource for multipartite
non-locality. Finding the other resources which are responsible for the non-local properties of
quantum mechanics, seems to be a very important issue.

The purpose of this paper is to examine the relationship between tripartite entanglement
and Smax in non-inertial frames. Since entanglement and non-locality are the two most
important concepts in quantum mechanics, the relationship between them is at the heart
of quantum mechanics. Recently, the relations of several three-qubit pure states were derived
in a non-relativistic framework [6, 11]. The original purpose of this paper was to extend
these relations to the relativistic framework. Since, furthermore, the analysis of non-inertial
frames generally transforms a pure state into a mixed state due to the Unruh decoherence effect
[12, 13], as a by-product of this, one can derive the relationship between tripartite entanglement
and Smax for the various mixed states in this paper.

Although a similar issue was considered recently in [14], the authors in that study chose
only π -tangle [15] as a tripartite entanglement measure. However, the explicit π -tangle-
dependence of Smax was not derived in [14]. Furthermore, as far as we know, there are two
different tripartite entanglement measures: three-tangle [8] and π -tangle [15]. Unlike the
π -tangle, the three-tangle has its own historical background. In fact, it exactly coincides with
the modulus of a Cayley hyperdeterminant [16, 17], which was constructed long ago. It is also
a polynomial invariant under the local SL(2, C) transformation [18, 19]. Thus, it seems to be
more meaningful to derive the three-tangle-dependence of the Smax explicitly.

However, the calculation of the three-tangle for three-qubit mixed states is much more
difficult than that of the π -tangle. Since the three-tangle for a mixed state ρ is defined by the
convex roof method [20, 21]

τ (ρ) = min
∑

j

Pjτ (ρ j), (3)

where the minimum is taken over all possible ensembles of pure states ρ j with 0 � Pj � 1, the
explicit computation of the three-tangle needs to derive an optimal decomposition of the given
mixed state ρ. It causes difficulties in the analytic computation of the three-tangle. Recently,
however, various techniques [22–27] were developed to overcome these difficulties. However,
it is still very important to compute the three-tangle analytically for high-rank mixed states
except in very rare cases. Fortunately, the mixture derived in this paper is only rank-2. Thus,
it is possible to compute the three-tangle analytically, using various techniques developed in
[22–27]. In this paper we use these techniques to derive the relations between the three-tangle
and the Smax in non-inertial frames.

Now, we assume that Alice, Bob and Charlie initially share the generalized fermionic
GHZ state |ψg〉ABC or the MS state |ψs〉ABC. We also assume that after sharing his own qubit,
Charlie moves with respect to Alice and Bob with a uniform acceleration a. Then, Charlie’s
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vacuum and the one-particle states |0〉M and |1〉M , where the subscript M stands for Minkowski,
are transformed into [28]

|0〉M → cos r|0〉I|0〉II + sin r|1〉I|1〉II (4)

|1〉M → |1〉I|0〉II,

where the parameter r is defined by

cos r = 1√
1 + exp(−2πωc/a)

, (5)

and c is the speed of light, and ω is the central frequency of the fermion wave packet1. Thus,
r = 0 when a = 0 and r = π/4 when a = ∞. In equation (4), |n〉I and |n〉II (n = 0, 1) are the
mode decompositions in the two causally disconnected regions in Rindler space. Therefore,
equation (4) implies that the physical information initially formed in region I is leaked into
region II, which is a key element of the Unruh effect [12, 13].

Before we discuss the relationship between the Svetlichny inequality and tripartite
entanglement, we should comment that the superselection rule (SSR) of the fermion fields [29]
does not allow |ψg〉ABC and |ψs〉ABC as fermion states. This can be easily confirmed by the fact
that |ψg〉〈ψg| and |ψs〉〈ψs| do not commute with (−1)F̂ = diag{1,−1,−1, 1,−1, 1, 1,−1},
where F̂ is the fermion number operator [30]. Recently, the SSR and other subtle issues
for fermion fields were discussed in the context of relativistic quantum information theories
[31–33]. Furthermore, as discussed in [30], this SSR constraint also modifies the definition
of the three-tangle for mixed states because the optimal decompositions should also obey the
SSR constraint. If, therefore, the SSR is taken into account, equation (3) yields merely the
lower bound of the three-tangle.

Despite this, we ignore the restriction generated by the SSR in this paper. The main reason
for this is that as Weinberg commented [29], it is always possible to enlarge the symmetry
group to a new one that lacks the SSR. Thus, it is possible to remove the SSR restriction by
extending the symmetry group appropriately.

Using equation (4) one can easily show that Charlie’s acceleration makes |ψ〉ABC to be

|ψ〉ABC → [cos θ1 cos r|000〉 + sin θ1|111〉] ⊗ |0〉II + cos θ1 sin r|001〉 ⊗ |1〉II, (6)

where |αβγ 〉 ≡ |αβ〉M
AB ⊗ |γ 〉I . Since |ψ〉II is a physically inaccessible state from region I,

it is reasonable to take a partial trace over II to average it out. Then, the remaining quantum
state becomes the following mixed state:

ρABI = cos2 θ1 cos2 r|000〉〈000| + cos2 θ1 sin2 r|001〉〈001| + sin2 θ1|111〉〈111|
+ sin θ1 cos θ1 cos r{|000〉〈111| + |111〉〈000|}. (7)

The maximum of the expectation value of the Svetlichny operator, Smax, for ρABI was explicitly
derived in [14], and the final expression can be written as

Smax = 4 max[|2 cos2 θ1 cos2 r − 1|,
√

2| sin 2θ1| cos r]. (8)

When a = 0, equation (8) reduces to Smax = 4 max[|2 cos2 θ1−1|,√2| sin 2θ1|], which ensures
that the violation of the Svetlichny inequality arises when π/8 < θ1 < 3π/8 in a region

1 For the bosonic state equation (4) is changed into

|0〉M → 1

cosh r

∞∑
n=0

tanhn r|n〉I |n〉II |1〉M → 1

cosh2 r

∞∑
n=0

tanhn r
√

n + 1|n + 1〉I |n〉II ,

where

cosh r = 1√
1 − exp(−2πωc/a)

.
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0 � θ1 � π/2. When a = ∞, equation (8) reduces to Smax = 4 max[1 − cos2 θ1, sin 2θ1],
which shows that there is no violation of the Svetlichny inequality.

Now, we discuss the tripartite entanglement of ρABI given in equation (7). The computation
of its π -tangle is straightforward and the final expression becomes

πGGHZ = 2 + cos2 r

3
sin2 2θ1 + 1

3
cos4 θ1 sin2 2r. (9)

When, therefore, a = 0, πGGHZ becomes sin2 2θ1, which shows that |ψg〉 is maximally
entangled at θ1 = π/4 and non-entangled at θ1 = 0 and π/2. When a = ∞, equation (9)
reduces to πGGHZ = (5/6) sin2 2θ1 + (1/3) cos4 θ1, which is maximized by 25/27 ∼ 0.926 at
θ1 = sin−1(2/3) and minimized by zero at θ1 = π/2. The nonvanishing tripartite entanglement
at a → ∞ limit was discussed in [34]. This property differs crucially from the bosonic bipartite
entanglement, which completely vanishes at a → ∞ limit [35].

In order to compute the three-tangle it is convenient to use the spectral decomposition of
ρABI , whose expression is

ρABI = p|GHZ〉〈GHZ| + (1 − p)|001〉〈001|, (10)

where |GHZ〉 = a|000〉 + b|111〉 with

p = cos2 θ1 cos2 r + sin2 θ1 a = cos θ1 cos r√
sin2 θ1 + cos2 θ1 cos2 r

b = sin θ1√
sin2 θ1 + cos2 θ1 cos2 r

. (11)

In order to derive the optimal decomposition we define

|Z(φ)〉 = √
p|GHZ〉 + eiφ

√
1 − p|001〉. (12)

This has several interesting properties. First, ρABI given in equation (10) can be written as

ρABI = 1
2 [|Z(φ)〉〈Z(φ)| + |Z(φ + π)〉〈Z(φ + π)|]. (13)

Secondly, the three-tangle of |Z(φ)〉 is independent of φ as τZ = 4p2a2b2. If, therefore,
equation (13) is an optimal decomposition, the three-tangle of ρABI is also τABI = 4p2a2b2.
Since τABI is convex with respect to p, this fact guarantees that equation (13) is really the
optimal decomposition for ρABI . Using equation (11) it is easy to show

τABI = sin2 2θ1 cos2 r. (14)

Therefore, combining equation (8) and equation (14) we get the explicit three-tangle-
dependence of Smax as following:

Smax = 4 max[
√

cos2 r − τABI cos r − sin2 r,
√

2τABI]. (15)

When a = 0, it is easy to show that equation (2) is reproduced.
In figure 1(a) we plot the three-tangle-dependence of π -tangle when a = 0, 2ωc, 5ωc, and

10ωc. As expected from the fact that these are two different tripartite entanglement measures,
π -tangle is monotonous with respect to the three-tangle. Figure 1(a) also shows that regardless
of acceleration, the a π -tangle is larger than the three-tangle, which was conjectured in [15, 26].

Figure 1(b) and figure 1(c) show the tripartite entanglement-dependence of Smax. As
figure 1(b) exhibits, the violation of the Svetlichny inequality, i.e. Smax > 4, occurs when
πABI > π∗, where π∗ increases with increasing as. The critical value π∗ is given in table 1 for
various a. As table 1 shows, π∗ approaches 1 at the a → ∞ limit, which implies that there is no
violation of the Svetlichny inequality at this limit. Figure 1(c) is a plot of the τABI-dependence
of Smax for various a. As figure 1(c) exhibits, the violation of the Svetlichny inequality occurs
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(a)

(b) (c)

Figure 1. In (a) we plot the π -tangle (9) versus the three-tangle (14). The π -tangle exhibits
monotonous behaviour with respect to the three-tangle. This fact is plausible because these
tangles are two different measures for tripartite entanglement. In (b) and (c) we plot the tripartite
entanglement-dependence of Smax. These figures show that Smax exhibits decreasing behaviour in
the small entanglement region. This fact seems to imply that entanglement is not a unique physical
resource for quantum mechanical non-locality.

Table 1. Acceleration dependence of π∗ and τ∗.

a/ωc 0 2 4 6 8 10 100 ∞
π∗ 0.50 0.563 0.70 0.757 0.787 0.806 0.901 1
τ∗ 1 0.959 0.828 0.740 0.687 0.652 0.566 0.5

when τABI > 0.5 for all a. The maximum of the three-tangle, i.e. τ∗, is dependent on Charlie’s
acceleration, a. As table 1 shows, τ∗ exhibits a decreasing behaviour with increasing a, and
eventually approaches 0.5 in a → ∞ limit. This fact also indicates that the state shared initially
by Alice, Bob and Charlie cannot have a non-local property in Charlie’s infinite acceleration
although it has nonzero tripartite entanglement.

If Alice, Bob and Charlie initially share the MS state |ψs〉ABC, Charlie’s acceleration
changes |ψs〉ABC into

σABI = 1
2 [cos2 r|000〉〈000| + sin2 r|001〉〈001| + cos2 θ3 cos2 r|110〉〈110|

+(sin2 θ3 + cos2 θ3 sin2 r)|111〉〈111| + cos θ3 cos2 r{|000〉〈110| + |110〉〈000|}
5
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+ sin θ3 cos r{|000〉〈111| + |111〉〈000|} + cos θ3 sin2 r{|001〉〈111|
+|111〉〈001|} + sin θ3 cos θ3 cos r{|110〉〈111| + |111〉〈110|}]. (16)

The maximum of 〈S〉 = tr[σABIS] was explicitly computed in [14], which has the form

Smax = 4[cos2 θ3 cos2 2r + 2 sin2 θ3 cos2 r]1/2. (17)

Thus, Smax � 4 for a = 0 and Smax � 4 for a = ∞.
The π -tangle for σABI can be computed straightforwardly and its final expression is

πMS = 1
3 [sin2 θ3(2 + cos2 r) + sin2 r cos2 r(1 + cos2 θ3)

2]. (18)

In order to compute the three-tangle for σABI , we express σABI in terms of eigenvectors as
following:

σABI = 
+|�+〉〈�+| + 
−|�−〉〈�−| (19)

where


± = 1 ± √
�

2
(20)

|�±〉 = 1

N±

[
X±|000〉 + Y±|001〉 + Z±|110〉 + W±|111〉

]
.

In equation (20) � = cos2 θ3 + cos2 r[sin2 θ3 − sin2 r(1 + cos2 θ3)
2] and

X± = cos r(μ ±
√

�) Y+ = Y− = sin θ3 cos θ3 sin2 r (21)

Z± = cos θ3X± W± = sin θ3(cos2 r ±
√

�)

with μ = cos2 r − sin2 r cos2 θ3. The normalization constants N± are

N 2
± = X2

± + Y 2
± + Z2

± + W 2
±

= ±2
√

�[(1 + μ)(cos2 r ±
√

�) − sin2 r cos2 r cos2 θ3(1 + cos2 θ3)]. (22)

Then, it is easy to show 〈�+|�−〉 = 0. We now define

|�±(ϕ)〉 =
√


+|�+〉 ± eiϕ
√


−|�−〉. (23)

Then, σABI can be written as

σABI = 1
2 |�+(ϕ)〉〈�+(ϕ)| + 1

2 |�−(ϕ)〉〈�−(ϕ)|. (24)

The three-tangle τ (�±) for |�±(ϕ)〉 is

τ (�±) = 4|X̃±W̃± − Ỹ±Z̃±|2 (25)

where G̃± = √

+G+/N+ ± eiϕ√


−G−/N− with G = X , Y , Z, or W . Thus, if equation (24)
is an optimal decomposition for σABI , the three-tangle becomes

τ (σABI ) = 4
2
+

N 4+
(X+W+ − Y+Z+)2 + 4
2

−
N 4−

(X−W− − Y−Z−)2

+4
+
−
N 2+N 2−

{(X+W− + X−W+) − (Y+Z− + Y−Z+)}2

+8
+
−
N 2+N 2−

(X+W+ − Y+Z+)(X−W− − Y−Z−) cos 2ϕ. (26)

Since (X+W+ − Y+Z+)(X−W− − Y−Z−) = cos2 r sin4 r cos4 θ3 sin6 θ3 � 0, we have to choose
ϕ = π/2 to minimize τ (σABI ). Then, τ (σABI ) simply reduces to

τ (σABI ) = cos2 r sin2 θ3. (27)

6
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(a) (b)

(c)

Figure 2. In (a) we plot the π -tangle (18) versus the three-tangle (27). As figure 1(a) the π -tangle
exhibits monotonous behaviour with respect to the three-tangle. Regardless of acceleration a the
π -tangle is larger than the three-tangle, which might be true generally, as conjectured in [15, 26].
In (b) and (c) we plot the tripartite entanglement-dependence of Smax. Unlike figure 1(b) and
figure 1(c) the decreasing behaviour of Smax in small entanglement region disappears.

It is interesting to note that the three-tangle is much simpler than the π -tangle. From
equation (17) and equation (27) one can derive the three-tangle-dependence of Smax, which is

Smax = 4
√

cos2 2r + (5 − 4 cos2 r − tan2 r)τ (σABI ). (28)

When a = 0, equation (28) reduces to Smax = 4
√

1 + τ (σABI ). Thus, the violation of the
Svetlichny inequality occurs for all nonzero three-tangles. When a = ∞, equation (28)
reduces to Smax = 4

√
2τ (σABI ), which implies that the violation of the Svetlichny inequality

occurs when τ (σABI ) > 1/2.
In figure 2(a) we plot the three-tangle-dependence of π -tangle for σABI when a = 0, 2ωc,

5ωc, and 10ωc. As in figure 1(a) the π -tangle (18) is monotonous with respect to the three-
tangle (27). Figure 2(a) also indicates that π -tangle is in general larger than the three-tangle.
In figure 2(b) and figure 2(c) we plot the tripartite entanglement-dependence of Smax. Unlike
figure 1(b) and figure 1(c) there is no decreasing behaviour of Smax in these figures. From
figure 2(b) and figure 2(c) we know that πc and τc increase with increasing a if the violation
of the Svetlichny inequality occurs when πMS > πc and τ (σABI ) > τc. These critical values
are given in table 2 for various a. Table 2 shows that πc → 1 and τc → 0.5 in the infinite
acceleration limit.

7
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Table 2. Acceleration dependence of πc and τc.

a/ωc 0 2 4 6 8 10 100

πc 0 0.191 0.250 0.685 0.746 0.780 0.901
τc 0 0.142 0.385 0.456 0.479 0.488 0.5

If Bob moves, instead of Charlie, with a uniform acceleration, the initial state |ψ〉ABC is
transformed into

σAIC = 1
2 [cos2 r|000〉〈000| + sin2 r|010〉〈010| + cos2 θ3|110〉〈110| + sin2 θ3|111〉〈111|

+ cos r cos θ3{|000〉〈110| + |110〉〈000|} + cos r sin θ3{|000〉〈111|
+|111〉〈000|} + sin θ3 cos θ3{|110〉〈111| + |111〉〈110|}]. (29)

The maximum of 〈S〉 = tr[σAICS] was given in [14], which is

Smax = 4 cos r[cos2 θ3 + 2 sin2 θ3]1/2. (30)

The π -tangle for σAIC can be computed straightforwardly and the final expression is

π̃MS = 1
3 [1 + sin2 θ3 − cos2 r cos 2θ3 + sin2 r cos 2r + sin2 r

√
sin4 r + 4 cos2 r cos2 θ3]. (31)

Using a similar method one can compute the three-tangle for σAIC, which is exactly the same
as τ (σABI ) given in equation (27). Therefore, the three-tangle-dependence of Smax, in this case
is

Smax = 4
√

cos2 r + τ (σAIC). (32)

Equation (32) implies that the violation of the Svetlichny inequality arises for all nonzero
τ (σAIC) when a = 0. It also implies that τ (σAIC) � 1/2 when a → ∞ is the limit because
Smax � 4 in this limit.

In this paper we have examined the tripartite entanglement-dependence of Smax = max〈S〉,
where S is the Svetlichny operator, when one party moves with a uniform acceleration a with
respect to other parties. If the initial tripartite state is the generalized GHZ state |ψg〉ABC, the
three-tangle-dependence of Smax is analytically derived in equation (15). As figure 1 shows,
Smax exhibits decreasing behaviour in the small tripartite entanglement region while it exhibits
an increasing behaviour in the large tripartite entanglement region. This fact seems to suggest
that the tripartite entanglement is not the only physical resource for tripartite non-locality. If
the initial state is the MS state |ψs〉ABC, the explicit relations between Smax and the three-tangle
are derived in equation (28) and equation (32). In this case the decreasing behaviour of Smax

disappears as figure 2 shows. The a-dependence of the critical values π∗, τ∗, πc, and τc is
summarized in table 1 and table 2.

It would seem interesting to generalize our results to the tripartite bosonic cases [34].
In this case, however, it is very difficult to compute Smax in a non-inertial frame because the
acceleration of one party transforms the qubit system at a = 0 into a qubit system for nonzero
a. In order to analyse this issue, we should define the Svetlichny-like inequality in the qubit
system.

As equations (8), (17), and (30) show, the violation of the Svetlichny inequality does not
occur in the a → ∞ limit [36] even if the tripartite entanglement does not completely vanish
at this limit. This fact suggests that although there is some connection between the tripartite
non-locality and the tripartite entanglement, the entanglement is not a unique resource for the
non-locality. What then, are the other physical resources responsible for the non-locality of
quantum mechanics? As far as we know, we do not yet have definite answer. We will continue
to study this issue in the future.

8
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