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Bipartite maximally entangled states have the property that the largest Schmidt coefficient reaches its lower
bound. However, for multipartite states, the standard Schmidt decomposition generally does not exist. We use
a generalized Schmidt decomposition and the geometric measure of entanglement to characterize three-qubit
pure states and derive a single-parameter family of maximally entangled three-qubit states. The paradigmatic
Greenberger-Horne-Zeilinger �GHZ� and W states emerge as extreme members in this family of maximally
entangled states. This family of states possesses different trends of entanglement behavior: in going from GHZ
to W states, the geometric measure, the relative entropy of entanglement, and the bipartite entanglement all
increase monotonically whereas the three-tangle and bipartition negativity both decrease monotonically.
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I. INTRODUCTION

Maximally entangled states are in essence the natural
units of entanglement with which one would like to compare
all quantum states. A well-motivated approach to compare
different entangled states and quantify their entanglement is
to consider how they can transform to each other under local
operations and classical communications �LOCCs� in the
asymptotic regime. The main question is then to quantify the
optimal rate of conversion between two given states �1�. For
bipartite systems, this gives rise to the two basic operational
entanglement measures: the entanglement cost �EC� �1,2�
and the distillable entanglement �ED� �1,3�, with Bell states
�4,5� emerging as the standard metric of entanglement. While
the latter measure is the rate at which copies of the maxi-
mally entangled state can be concentrated from those of a
given state, the former is the rate at which copies of the
maximally entangled state need to be consumed for the
preparation of the given state �2,3,6,7�.

In contrast, there is no simple and unique characterization
of a maximally entangled state in multipartite settings. It has
been a long-standing question whether there exists a finite
minimal reversible entanglement generating set �MREGS�
�8�, as the states in MREGS would provide several distinct
metrics of entanglement and hence the generalizations of ED
and EC would become possible. In addition to the issue of
interconversion in the asymptotic limit, another challenge
lies in the fact that multipartite states can be entangled in
several inequivalent ways �9,10� and that the number of
these likely grows exponentially with the number of parties
�10�.

Perhaps, to get to certain handle of these problems, it is
useful, as an initial stage, to elucidate an important question
of which pure states can be regarded as the maximally en-
tangled states �11�. A clear definition of these states and the
search of an effective method for deriving them could offer a

step toward understanding multipartite entanglement, includ-
ing the structure of the Hilbert space and multipartite en-
tanglement measures. Any multipartite entanglement mea-
sure is perhaps a likely starting point for such a definition of
maximally entangled states, as for each measure there must
exist a set of states which is maximally entangled. However,
these states may not be maximally entangled using a differ-
ent measure. Therefore, one then has to choose an entangle-
ment measure that gives rise to a set of maximally entangled
states that include the known ones in the set. Furthermore,
the selected measure should be suitable for any number of
parties with any dimensions in order for the notion of maxi-
mal entanglement to be properly quantified.

In the setting of three qubits, the Greenberger-Horne-
Zeilinger �GHZ� state �GHZ����000�+ �111�� /�2 �12� and
the W state �W����001�+ �010�+ �100�� /�3 �9� have been re-
alized as two inequivalent entangled states that cannot be
transformed to each other via LOCC or even stochastically.
GHZ state seems to be the most natural generalization of
Bell states and possesses a maximum tripartite entanglement
characterized by the three-tangle �13�. On the other hand, W
state possesses zero three-tangle and yet maximizes the re-
sidual bipartite entanglement �9�. In some sense, both states
are maximally entangled. However, the exact value of en-
tanglement depends on the choice of entanglement measures
and it is likely that different measures may give different
ordering of the entanglement quantity. For example, using
the relative entropy of entanglement �ER� �14�, one has
ER�GHZ�=1 and ER�W�=log2�9 /4��1 �15�. However, us-
ing the negativity N across any bipartition, one obtains
N�GHZ�=1�N�W�=2�2 /3 �16�. Hence, the notion of being
maximally entangled can depend on the choice of entangle-
ment measures. In the setting of two qubits, in contrast, the
Bell states emerge as the ones that possess maximal en-
tanglement, independent of the choice of measures. Nonethe-
less, the dependence does appear when one considers two-
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qubit mixed states and the form of maximally entangled two-
qubit mixed states �17–19� �e.g., parametrized by entropy�
can actually vary �19�.

Here we characterize maximal entanglement of three-
qubit pure states via the geometric measure of entanglement
�20�. Under this measure, the W state turns out to possess the
maximal entanglement. To see whether the GHZ can fit into
our picture, we investigate the maximal entanglement with a
single parameter �, which we call the “gauge” phase �which
appears in the generalized Schmidt decomposition �21–23�
and to be defined below�, in analog to the two-qubit maxi-
mally entangled mixed states parametrized by the entropy.
We derive the whole family of maximally entangled states
�characterized by the gauge phase� and show that both GHZ
and W emerge as maximally entangled states at two different
gauge phases at the opposite ends of this family. Interest-
ingly, in going from GHZ to W as the gauge phase increases,
the geometric measure and the relative entropies of entangle-
ment and the bipartite entanglement all increase monotoni-
cally whereas the three-tangle and bipartite negativity both
decrease monotonically �see Fig. 6�. The two different trends
of these entanglement monotones for this family of states
imply that no states in the family can be interconverted de-
terministically to each other via LOCC using a single copy
�24�. Furthermore, our analysis of using three-tangle shows
that any states can be probabilistically converted to one an-
other via stochastic LOCC in the family except to or from
the W state. This is because the whole family of the maxi-
mally entangled three-qubit states, except the W state, be-
longs to the GHZ class, a classification introduced by Vidal
and Cirac �6�.

The paper is organized as follows. In Sec. II, we use a
generalized Schmidt decomposition to parameterize three-
qubit states. In Sec. III, we consider the case of vanishing
gauge phase and obtain the GHZ state. In Sec. IV, we con-
sider the case of maximal gauge phase and obtain the W
state. In Sec. V, we consider the general case and derive a
one-parameter family of maximally entangled states. Fur-
thermore, we discuss several entanglement properties and in-
terconversion of states in the family of the maximally en-
tangled states. In Sec. VI, we make concluding remarks.

II. GENERALIZED SCHMIDT DECOMPOSITIONS

In general, one needs 14 real parameters to describe a
three-qubit pure state. Carteret et al. �21� and Acín et al. �22�
independently proposed generalizations of the Schmidt de-
composition in multipartite settings �three qubits, in particu-
lar� to reduce the number of necessary parameters. The gen-
eralized Schmidt decomposition �GSD� that we shall use is a
variant �23� that is closely related to the geometric measure
and hence it is more appropriate to our discussions here. Let
us briefly discuss this decomposition. For any multiqubit
pure state, one can always search a closest product state to it
and the local states of the closest product state and their
orthonormal states uniquely �up to phases� determine the lo-
cal bases one uses to express the multiqubit state. One can
also relabel the closest product as �000� and the local state
orthonormal to �0� by �1� and arrive at the following expres-
sion �23�:

��� = g�000� + t1�011� + t2�101� + t3�110� + ei�h�111� , �1�

where the labels within each ket refer to qubits A, B, and C
�or 1, 2, and 3� in that order and will be suppressed whenever
no confusion occurs. Furthermore, the parameters in the de-
composition satisfy

g � ti,h � 0,− �/2 � � � �/2 and

g2 + h2 + t1
2 + t2

2 + t3
2 = 1. �2�

The reason why we do not have �001�, �010�, and �100� is
that the component �000� is the closest product state and if
there were any of the three other components, one could
have absorbed them and increased the maximal overlap g.
We shall refer to � as the “gauge phase,” as such a factor will
necessarily appear in any such decomposition but it may be
associated with �111� or with �100� as in Ref. �22�. In what
follows, we shall analyze only positive values of the gauge
phase since the maximal overlap g is an even function on �.

Why do we choose to parametrize the family of maxi-
mally entangled states by � �or equivalently the phase in Ref.
�22��? Consider the unitary three-qubit gate, control-control-
phase �CCP� gate, that multiplies the computational state
�111� by a phase factor ei� but leaves unchanged the remain-
ing seven basis states �000� , �001� , . . . , �110�. This gate can be
used to generate entanglement �one says that it is an entan-
gling gate�. If we start with the �unnormalized� product state
��0�+ �1����0�+ �1����0�+ �1�� and apply to it the CCP gate, one
obtains �000�+ �001�+ �010�+ �100�+ �110�+ �101�+ �011�
+ei��111�. It can be shown that this state is entangled and has
a three-tangle �= �sin �� /8 and, moreover, the reduced two-
qubit state can also be entangled depending on �. The states
in the generalized Schmidt form �1� with fixed g , t1 , t2 , t3 ,h
but different �’s can be connected by the entangling CCP
gate with an appropriate value of phase �. In contrast, any
local-unitary transformation that changes any of the five
magnitude parameters will generally change the values of the
others and most likely take the state out of the generalized
Schmidt form. Since any three-qubit pure state can be made
into this form by local-unitary transformations, it seems
natural to take the gauge phase � as the parameter to search
for the family of maximally entangled states.

The decomposition into the form �1� captures all the
three-qubit pure states up to local-unitary transformations. It
is thus a convenient starting point for searching maximally
entangled three-qubit states. When �000� is the closest prod-
uct state and the parameters satisfy condition �2�, we shall
refer to the decomposition as being in the canonical form. In
this canonical form, the nearest product state �000� is a sta-
tionary point for � and should satisfy the stationarity equa-
tions �20,21�, which represent a nonlinear eigenvalue prob-
lem

	i1i2��� = 	i�i3�, 	i1i3��� = 	i�i2�, 	i2i3��� = 	i�i1� ,

�3�

where we can always restrict ourselves to 	i�0 by adjusting
phases of local states �i�. The above stationary conditions
arise from the requirement that the overlap with product
states be extremal under the constraint that product states be
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normalized �for derivation, see Refs. �20,29��. The resulting
equations generalize the linear eigenvalue problem to a non-
linear form, which has many features different from the lin-
ear scenario �29�. �When the number of parties is 2, the gen-
erally nonlinear eigenvalue equation becomes linear.� The
largest Schmidt coefficient is the maximal nonlinear eigen-
value, i.e., g=maxi�	i�, and thus the nearest product state is
the dominant eigenvector of stationarity equations. As men-
tioned earlier, it uniquely defines the factorizable basis of
GSD consisting of �000� and its complimentary orthogonal
product states �23�.

Our goal is to find a family of maximally entangled states,
parameterized by the gauge phase �. First, we observe that
the coefficient g in the canonical decomposition measures
the overlap �or the angle� from � to the closest unentangled
state �20,25� and cannot decrease under LOCC �14,26�.
Hence it should be minimal for the maximally entangled
states for all other possible parameters �t and h� given fixed
gauge phase �. The crucial point then lies in finding the
lower bound on g �27�. In the case of generic three-qubit
states, stationarity equations have six solutions. Let 	1 be the
largest eigenvalue and hence g=	1. Then clearly we have

g � 	 = max�	2,	3, . . . ,	6� . �4�

This is a strong lower bound on g. If one can compute all the
eigenvalues 	i, then one can find the lowest value of g di-
rectly. We shall first do this for special cases �=0 and �
=� /2 and the celebrated GHZ and W states emerge as the
maximally entangled states, respectively.

In general, the derivation of eigenvalues 	i gives rise to
unsolvable equations �28,29�. Fortunately, there is a realiz-
able method that gives the desired lower bound. The essence
of the method is the following. If the three-qubit state is
maximally entangled, then the above inequality would be
saturated. Consequently, g must coincide with 	 and thus the
largest eigenvalue of stationarity equations should be degen-
erated. This requirement imposes a condition �i.e., degen-
eracy condition� on state parameters, which can then be de-
duced from stationarity equations. An example is the GHZ
state ��000�+ �111�� /�2, where �000� and �111� are two such
“degenerate” states with 	=1 /�2. Following the above pro-
cedure, we derive the degeneracy condition for three-qubit
states and single out states satisfying this condition. Next we
find among these states the one with the minimal g �over the
remaining free parameters� for a given value of the gauge
phase.

We have seen that the GHZ and W states emerge as maxi-
mally entangled states in different contexts, such as via
three-tangle and residual bipartite entanglement, respec-
tively, and they are invariant under permuting parties. It is
thus natural to assume that maximally entangled states can
be made symmetric. This ansatz will be verified against nu-
merical experiments �see Fig. 5�. Thus, we shall work with
the assumption that t1= t2= t3� t and consider from now on
states of the form

��� = g�000� + t�011� + t�101� + t�110� + ei�h�111� . �5�

Eigenvalues 	i of the state Eq. �5� satisfy a polynomial
equation of degree 12 and are roots of the characteristic poly-

nomial �29�. Local states �i� satisfy the analogous polynomial
equation and the general case remains to some extent intrac-
table. However, at extreme values of the gauge phase �=0
and �=� /2, this polynomial equation can be factorized to
cubic equations. Another major step toward analytic solu-
tions is the following. Each of these cubic equations can be
further factorized to a linear and quadratic equations. This
observation allows us to find all roots of the characteristic
polynomial. Some of them have no associated eigenvectors
and hence are irrelevant. Some others never maximize the
overlap since their value is smaller than max�h , t� in whole
state parameter space �30�. Remaining solutions are listed in
the Appendix.

III. GHZ STATE

Consider first the case �=0. All of these states are sym-
metric and have real coefficients

��0� = g�000� + t��011� + �101� + �110�� + h�111� . �6�

Owing to these properties, the eigenvector with eigenvalue 	
is symmetric, i.e., has a form �qqq�, and its constituents �q�
have real coefficients. In this reason, we will derive here only
symmetric solutions as the asymmetric ones give strictly 	

g.

We parameterize the pure one-qubit state �q� by a single
angle �q�=cos ��0�+sin ��1� and insert it into Eq. �3�. The
result is a pair of equations for unknowns � and 	,

g cos2 � + t sin2 � = 	 cos �, h sin2 � + t sin 2� = 	 sin � .

�7�

These equations have an obvious solution 	1=g , cos �=1,
reflecting the fact that the state is already written in Schmidt
normal form. The second solution is given by solving tan �
from dividing the first equation by the latter on both sides.
We then arrive at

tan � =
r0

2t
, 	2 =

hr0 + 4t2

�r0
2 + 4t2

, �8�

where r0=h+�h2+8t2−4gt. This solution gives rise to a ba-
sis 
�q� , �p�� defined as follows:

�q� =
2t�0� + r0�1�
�r0

2 + 4t2
, �p� =

r0�0� − 2t�1�
�r0

2 + 4t2
. �9�

To obtain the maximal entanglement, we require that 	1
=	2. Because �qqq� is another equally good dominant eigen-
vector, one can construct a new Schmidt decomposition of
��0� whose factorizable basis consists of 
�q� , �p�� instead of

�0� , �1��. This new decomposition must not differ from the
original one, since coefficients of the canonical form are
uniquely defined by state parameters. This in turn means that
the basis defined by 
�q� , �p�� results in a Schmidt form
equivalent to Eq. �6�

��0� = g�qqq� + t��qpp� + �pqp� + �ppq�� + h�ppp� . �10�

By expanding the left-hand side of this equality in the com-
putation basis 
0,1� and identifying the corresponding coef-
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ficients with those in Eq. �6�, we arrive at the following three
conditions on state parameters:

hr0 + 4t2

�r0
2 + 4t2

= g,
2t�g − t�
�r0

2 + 4t2
= t,

4t2�r0 − h�
�r0

2 + 4t2
= t�2h − r0� .

�11�

By taking the ratios of the first two equations and the latter
two equations and then eliminating r0, we obtain the follow-
ing single condition on state parameters:

gh2 = �g + t�2�g − 2t� . �12�

We remark that Eq. �12� uniquely solves Eq. �11� and is in
fact the degeneracy condition that forces the correct Schmidt
decomposition.

Let us rewrite the degeneracy condition in the following
form: g�g2−h2−3t2�=2t3. Since t�0, it follows that g2

�h2+3t2. Then from the normalization condition g2+h2

+3t2=1, it further gives that g2�1 /2 and the lower bound
g2=1 /2 is reached at t=0, g=h. The resulting maximal en-
tangled state is the celebrated GHZ state

�GHZ� =
�000� + �111�

�2
. �13�

IV. W STATE

Consider now the case �=� /2. This case includes all
W-class states. Indeed, the three-tangle of a generic state Eq.
�1� is given by

� = 4g�g2h4 + 16t1
2t2

2t3
2 + 8gh2t1t2t3 cos 2� . �14�

It vanishes if either

gh2 = 0 and t1t2t3 = 0 �15�

or

gh2 = 4t1t2t3 � 0 and � = � �/2. �16�

The states satisfying Eq. �15� are biseparable, namely, sepa-
rable with respect to A :BC, B :AC, or C :AB bipartition
�6,23�, and the maximally entangled states are Bell states
between BC, AC, or AB.

In Eq. �16�, the case of �=−� /2 is equivalent to that of
�=� /2 because the period of the angle � is � and the point
−� /2 should be identified with � /2. All states satisfying Eq.
�16� are W-class states �6� and conversely any W-class state
has a Schmidt decomposition with coefficients Eq. �16�.
Thus generic pure three-qubit states have five independent
real parameters, whiles W-class states have three of them.

Stationarity equations give four relevant solutions and one
of them is symmetric �under qubit permutations� while the
remaining three others are not. The easiest way for finding
the symmetric solution �qqq� is to set �q�=ei�/3�cos ��0�
+ i sin ��1�� and solve the stationarity Eq. �3�, just like what
we did for the GHZ case. The solution is

tan � =
r�

2t
, 	 =

hr� + 4t2

�r�
2 + 4t2

, �17�

where r�=h+�h2+8t2+4gt. Since r� and r0 differ only by
the sign of t, the degeneracy condition forcing g=	 can be
obtained by taking t to −t in Eq. �12�,

gh2 = �g − t�2�g + 2t� . �18�

In the case of GHZ, the degeneracy condition is sufficient
for finding the maximally entangled state, but in the present
case, we need one more condition by examining three other
relevant solutions of stationarity equations. The first solution
is symmetric under the permutation of qubits A and B, but
asymmetric under other permutations and has a form �qqq��.
Other two solutions, with symmetric qubit pairs �A ,C� and
�B ,C�, respectively, give the same eigenvalue. Thus, it suf-
fices to consider the first solution of these in addition to that
in Eq. �17�. Its constituent state �q�, up to an irrelevant phase
factor, can be parameterized by two angles, which are �q�
=cos ��0�+ei
 sin ��1�. �Similar parametrization can be used
for �q��.� Straightforward but tedious algebra from solving
the stationarity conditions �3� gives rise to the equations
obeyed by angles � and 
,

cos 2� =
h2 + gt − g2

h2 + g2 − 3gt
, sin 
 =

h

2g
tan � , �19�

as well as the corresponding eigenvalue 	� being

	�2 =
g2h2 − 4gt3

g2 + h2 − 3gt
. �20�

We shall present in the Appendix a simpler derivation using
another approach outlined in the next section.

Thus far we have obtained two different eigenvalues,
namely, 	 and 	�, and consequently g has two different
lower bounds. As argued previously, for the maximally en-
tangled state, both lower bounds should be saturated and this
in turn uniquely defines state parameters. Indeed, by using
	�=g, it follows that �g+ t��g−2t�2=0 and hence g=2t �as
g , t�0�. Then the degeneracy condition �18� forces h2=2t2.
These two conditions together with the normalization condi-
tion give g=2 /3, t=1 /3, and h=�2 /3 and thus yield the
following maximally entangled state for �=� /2:

���/2� =
2

3
�000� +

1

3
��011� + �101� + �110�� + i

�2

3
�111� .

�21�

This form turns out to be the generalized Schmidt normal
form for the W state. Indeed, one can easily verify that U
� U � U���/2�= �W�, where

�W� =
�100� + �010� + �001�

�3
, U =

1
�3
��2 − i

1 i�2

 .

�22�

Thus, W state is the maximally entangled state for �=� /2. It
should be remarked that at g=2t and h2=2t2, the fraction
defining the angle � in Eq. �19� is indefinite since both ex-
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pressions in denominator and numerator vanish. The reason
is that the state ���/2� �as well as the W state� is an excep-
tional state �31� and has countless nearest product states de-
fined solely by the condition tan �=2�2 sin 
 �32�. All of
these product states are equally distant from ���/2� �i.e., in-
finitely degenerate� and form a circle around it. This infinite
degeneracy is best captured when viewed in the computa-
tional basis. To be more precise, the closest product states to
W state were previously shown �15� to be of the form

�ei�/2�2

3
�0� + e−i��1

3
�1�
�3

, �23�

where the arbitrariness of the phase � clearly shows the in-
finite degeneracy.

The eigenvalue 	� also exhibits interesting features. If g
=2t, then 	�=g and thus the solution Eq. �19� maximizes the
overlap. On the other hand, if gh2=4t3 but g�2t, then the
solution minimizes the overlap, i.e., resulting in 	�=0. In
order to obtain further insight into this, we relate 	� to the
three-tangle �. For the states in question, �=4g�gh2−4t3� and
	� can be written as

	�2 =
g2�

� + 4g�g + t��g − 2t�2 . �24�

This shows clearly when the asymmetric eigenvalue 	� takes
the maximal value and the minimal value.

V. GENERAL CASE

Having warmed up by the previous two examples, we
consider now the general case. The GHZ and W are two
special cases of the following treatment.

A. Derivation of the degeneracy condition

For symmetric states, any solution of stationarity equa-
tions is symmetric under the permutation of either the qubit
pair AB, AC, or BC �33�. Without loss of generality, we
consider a solution that contains a symmetric pair A and B,
i.e., the product state has a form �qqq�� which, of course,
does not exclude the possibility �q��= �q�. Furthermore, theo-
rem 1 of Ref. �34� states that the maximal overlap is
uniquely determined even if one party of the global pure
state is traced out. This enables us to express the maximal
overlap in terms of the reduced density matrix �AB as fol-
lows:

g2 = max
�1,�2

Tr��AB�1
� �2� , �25�

where �1 and �2 are single-system pure state densities. The
density matrix �AB can be expanded in terms of identity op-
erator and the Pauli matrices �’s,

�AB =
1

4
�1 � 1 + r · � � 1 + r · 1 � � + � · G · �� , �26�

where r is the Bloch vector of the qubit A�B� and the corre-
lation matrix G is defined by the formula Gij =Tr��AB�i
� � j�. Explicitly,

r = �2ht cos �,2ht sin �,g2 − h2 − t2� �27�

and

G = � 2t2 + 2gt 0 − 2ht cos �

0 2t2 − 2gt − 2ht sin �

− 2ht cos � − 2ht sin � g2 + h2 − t2 � . �28�

As �AB is symmetric under permuting parties, one can set
�1=�2=� �35�. Denote by u the Bloch vector of the density
matrix � that gives rise to the maximum of g2, then Eq. �25�
can be rewritten as

g2 =
1

4
�1 + 2u · r + u · Gu� . �29�

By introducing a Lagrange multiplier � that constraints
u ·u=1, the vector u satisfies the following equation:

r + Gu = �u . �30�

Since � uniquely defines u and g, two solutions have the
same eigenvalue if and only if they have the same Lagrange
multiplier. By direct substitution, it is easy to see that for the
solution uz=1, we have �0=2�g2− t2� and therefore the larg-
est eigenvalue of Eq. �30� is degenerate if there are two
solutions at �=�0. Inserting this value into Eq. �30�, one sees
that the necessary and sufficient condition for the existence
of the second solution corresponding to �=�0 is det�G
−�01�=0, which can be rewritten as

�g2 − t2�2�g2 − 4t2� = gh2�g3 − 3gt2 + 2t3 cos 2�� . �31�

This is the degeneracy condition for arbitrary symmetric
states and the solutions contain all three-qubit states that can
be regarded as maximally entangled. When �=0, Eq. �31�
reduces to Eq. �12� and when �=� /2, it reduces either to Eq.
�18� or g=2t. The latter is equivalent to Eq. �20�.

B. Maximally entangled three-qubit states

The degeneracy condition Eq. �31� can be considered as
an algebraic equation of degree six for g, where t and � are
free parameters and h2 can be further eliminated by the nor-
malization condition h2=1−g2−3t2. It has six roots g�t ,��
and as far as we are looking for the largest eigenvalue, we
should always take the largest root. In what follows, we will
use the notations g1 for the largest root and g2 for the second
largest root. Equation �31� gives different types of lower
bounds depending on whether or not cos 2� is positive and
below we consider these two cases.

Consider first states for which 0���� /4. The degen-
eracy condition can be rewritten as follows:

g2�g2 − 3t2��g2 − 3t2 − h2� = 4t6 + 2gh2t3 cos 2� . �32�

The right-hand side of this equation is positive and either
g2�3t2 or g2�3t2+h2 holds. To find the maximal overlap,
we should take the latter case g2�3t2+h2 and then from the
normalization condition, it follows that g is minimal when
t=0 and g=h. Thus the only maximally entangled state in
this class is the GHZ state: ��000�+ei��111�� /�2. It can be
understood by reference to Fig. 1, where � is taken to be � /6
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for illustration. The solid line represents the largest root g1�t�
and the dashed line represents the next root g2�t� as functions
on t. It should be stressed that the largest root g1�t� never
intersects with other roots and therefore it is the largest
Schmidt coefficient for all values of t. Moreover, g1�t� is a
monotonically increasing function and our goal is to find its
infimum �and hence the supremum of the geometric mea-
sure�, which is reached at t=0, giving rise to the GHZ state
�36�.

Consider now the interval � /4
�
� /2. Now the situa-
tion is different since g1 and g2 are not monotonic functions.
In Fig. 2, g1�t� �solid line� and g2�t� �dashed line� are plotted
at �=2� /5. The largest root g1�t� has a minimum while the
next root g2�t� has a maximum at t=0.319 43. These two
roots never intersect unless �=� /2. Therefore the minimum
of the function g1�t� is the lower bound of the largest
Schmidt coefficient. When � increases, the minimum of g1
moves toward larger � and decreases. Concurrently, the
maximum of g2 moves toward larger � and increases. Thus,
in the range � /4
�
� /2, one needs to search for the mini-
mum value of g1�t� over the allowable range of t in order to
find the maximal entangled states.

When �=� /2, minimum of g1 and maximum of g2 coin-
cide at t=1 /3 and this minimum value of g1 yields the W
state. This is illustrated in Fig. 3.

We remark that the inequality mint g1�t��maxt g2�t�
holds for fixed ��� /2. This feature is verified numerically
for all values 0��
� /2. This means that, given a fixed �,

the minimum of the function g1�t� is the lower bound on g
and also provides justification for the parametrization of
maximally entangled states by the gauge phase. The mini-
mum of g1 gives the value of the maximal overlap g for the
maximally entangled state at a given �. Together with the
value of t where the minimum of g1 is achieved, the com-
plete description of the maximally entangled state is obtained
�as h is determined via the normalization condition�.

In Fig. 4 we show the dependences of g and h on the
gauge phase �. The dependence of t on � can be inferred
from the normalization g2+3t2+h2=1. This then defines the
family of the maximally entangled three-qubit states. The
parameters g and h are both constant and equal to 1 /�2
within the interval 0���� /4, then decrease with �, with g
reaching 2/3 and h reaching �2 /3 at �=� /2. We remark that
we have assumed the maximally entangled states have the
permutation invariant form �5� and this is supported by our
numerical test that states generated randomly do not achieve
g below �or entanglement above� those of the maximally
entangled states �see Fig. 5�.

C. Survey of maximally entangled states

Once the maximally entangled three-qubit states �and
hence their maximal overlap� have been obtained as a func-
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FIG. 1. �Color online� Plots of t dependencies of the largest
g1�t� �solid line� and next g2�t� �dashed line� roots of the degen-
eracy condition for �=� /6. g1�t� is the largest Schmidt coefficient
and has a minimum at t=0 which gives the GHZ state.
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FIG. 2. �Color online� Plots of t dependencies of the largest
g1�t� �solid line� and next g2�t� �dashed line� roots of the degen-
eracy condition for �=2� /5. g1�t� has a minimum while g2�t� has a
maximum at t=0.319 43. These roots never intersect unless �
= �� /2.
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FIG. 3. �Color online� Plots of t dependencies of the largest
g1�t� �solid line� and next g2�t� �dashed line� roots of the degen-
eracy condition for �=� /2. The two curves touch at �1/3,2/3�.
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FIG. 4. �Color online� The gauge phase � dependence of the
largest Schmidt coefficient g as well as h of maximally entangled
states. g is constant and equal to 1 /�2 within 0���� /4, then it
decreases monotonically and becomes 2/3 at �=� /2. Similarly, h is
constant and equal to 1 /�2 within 0���� /4, then it decreases
monotonically and becomes �2 /3 at �=� /2. The parameter t is
obtained from the normalization g2+3t2+h2=1.
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tion of the gauge phase �, it is of interest to compare the
results with other measures. Two other quantities of rel-
evance are the aforementioned three-tangle � �13� and the
residual bipartite entanglement Er �9�. We show the � depen-
dences of � and Er for the maximally entangled three-qubit
states in Fig. 6. We also compare the � dependences of yet
two other measures, the bipartition negativity �N� and the
relative entropy of entanglement �ER�, in Fig. 7. The three-
tangle � and the negativity N decrease monotonically for �
� �� /4,� /2�, whereas the residual bipartite entanglement Er
and the relative entropy of entanglement ER increase and
achieve Er=4 /3 and ER=log2�9 /4� at �=� /2 for the W
state. The geometric measure for the maximally entangled
states is equal to 1−g2 and, hence, as can be inferred from
Fig. 4, it increases monotonically. To summarize the behav-
iors of three different measures, we have that, in going from
GHZ to W as � increases, the geometric measure and the
relative entropy of entanglement and the bipartite entangle-
ment all increase monotonically whereas the three-tangle and
the negativity both decrease monotonically.

Instead of the geometric measure, one may well use other
entanglement measures to derive the maximally entangled
states. Conversely, having at one’s disposal the set of maxi-
mally entangled states, one can analyze and compare differ-
ent entanglement measures. In this view, the behaviors of the
different measures can be understood as follows. The three-
tangle quantifies genuine tripartite, i.e., GHZ-type entangle-
ment, but does not detect W-type entanglement at all �37�.

Then all states within the interval −� /4���� /4 possess
only GHZ-type entanglement and in going away from these
states, the three-tangle detects the residual of GHZ-type en-
tanglement. In this regard, it decreases with � from �=1 at
GHZ state and vanishes at W state. On the contrary, the
residual bipartite entanglement quantifies the W-type en-
tanglement and does not detect the GHZ-type entanglement
at all. Hence, its behavior is opposite to that of the three-
tangle. The negativity quantifies entanglement across bipar-
tition. As the GHZ state is equivalent to a Bell state if one
makes the bipartition A :BC, it possesses the largest negativ-
ity N=1. The W state possesses less negativity N=2�2 /3,
and the family becomes less and less similar to GHZ as one
increases the gauge phase; one expects a gradual interpola-
tion of the negativity between these values. The situation of
the geometric measure is very different from these measures.
It quantifies whole entanglement present in the state and,
owing to this, detects a one-parameter set of maximally en-
tangled states. The behavior of the relative entropy of en-
tanglement for this family is qualitatively similar to that of
the geometric measure and this is expected as the geometric
measure can be used to provide lower bounds on the relative
entropy of entanglement �15�, with GHZ and W states satu-
rating the bounds.

It is interesting to note that the manifold of GHZ-class
maximally entangled states is an open manifold in a sense
that there is no state within GHZ-class states that has the
global maximal geometric measure of entanglement �which
is actually possessed by the W state�. Indeed, let us analyze
�=� /2 case once again. The three-tangle � of these states is
given by the formula �=4g�gh2−4t3� and the degeneracy
condition Eq. �18� can be rewritten as follows:

4g�g + t�2�g − 2t� = � . �33�

All of these states are GHZ-class state unless the limit �=0
�and hence g=2t, which means that the asymmetric solution
comes into action� is reached. Near this limit, g depends on �
by the asymptotic formula g=2 /3+�3� /8+O��� which can
be derived from Eq. �33�. On the other hand, if 0��
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FIG. 5. �Color online� The maximal overlap g vs the gauge
phase � for the family of maximally entangled three-qubit states
�red solid curve� as well as randomly generated states �dots�. This
shows that the family of states we have derived is indeed maximally
entangled �with minimal overlap g�.
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FIG. 6. �Color online� The phase dependence of three-tangle �
�red solid curve� and the residual bipartite entanglement Er �blue
dashed curve� vs � for the family of maximally entangled three-
qubit states.
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FIG. 7. �Color online� The phase dependence of the negativity N
�red solid curve� and the relative entropy of entanglement ER �blue
dashed curve� vs � for the family of maximally entangled three-
qubit states.
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� /2, then g�2 /3. Thus, the largest Schmidt coefficient of
the GHZ-class states comes arbitrarily close to 2/3 but never
reaches it as the lower bound is only achieved by the W state.

What about the interconversion between states in the fam-
ily of the maximally entangled states? We have seen that in
going from GHZ to W, the geometric measures of entangle-
ment and the bipartite entanglement both increase monotoni-
cally whereas the three-tangle decreases monotonically �see
Fig. 6�. The two different trends of these entanglement
monotones for this family of states imply that deterministic
interconversion via LOCC among these maximally entangled
three-qubit states is not possible. The results of the three-
tangle � and the Dür-Vidal-Cirac classification of entangled
states �6� show that under stochastic LOCC, any pure states
can be probabilistically converted to one another within the
same class and that there are five classes of three-qubit pure
states: one class of completely separable states, three classes
of biseparable states, and GHZ-class and W-class states. But
states in one class cannot be converted to any other in a
different class even with SLOCC. In our case, the whole
family of the maximally entangled three-qubit states, except
the W state �which has �=0�, belongs to the GHZ class �with
��0�. Therefore, under SLOCC, any states in the family of
maximally entangled three-qubit states can be probabilisti-
cally converted to one another in the family except to or
from the W state.

VI. CONCLUDING REMARKS

We use a generalized Schmidt decomposition and the geo-
metric measure of entanglement to characterize three-qubit
pure states and derive a single-parameter �characterized by
the gauge phase� family of maximally entangled three-qubit
states. The resulting family of maximally entangled states
connects continuously from GHZ to W state. The paradig-
matic GHZ and W states emerge as extreme members in this
family of maximally entangled states.

This family of maximally entangled states turns out to
possess interesting features of entanglement. In going from
GHZ to W, the geometric measure and the relative entropy of
entanglement and the bipartite entanglement all increase
monotonically whereas the three-tangle and the negativity
both decrease monotonically. This clearly exemplifies the or-
dering issue in the multipartite entanglement. It also implies
that deterministic interconversion via LOCC among these
maximally entangled three-qubit states is not possible. How-
ever, the results of the three-tangle � and the Dür-Vidal-Cirac
classification of entangled states show that under stochastic
LOCC, any states in the family of maximally entangled
three-qubit states can be probabilistically converted to one
another in the family �except to or from the W state�.

In general, three-qubit pure states require 14 real indepen-
dent parameters to completely characterize. The use of local-
unitary equivalence helps to reduce the number of param-
eters necessary for the characterization of entangled states.
Via the generalized Schmidt decomposition, we have navi-
gated through the remaining vast space and identified the
one-parameter maximally entangled states via the geometric
measure. But one may as well use other entanglement mea-
sures. Will other measures give rise to such a nontrivial fam-

ily of states? For example, using the gauge phase as the
parametrization and the three-tangle as the characterization
of entanglement, one obtains that the maximally entangled
states being ��000�+ei��111�� /�2, which are essentially the
same GHZ state. Such featureless family of states also arises
when the characterization of entanglement is replaced by
negativity. On the other hand, when using the relative en-
tropy of entanglement, one expects that the resulting family
of maximally entangled states will have similar feature to
those via the geometric measure, albeit not identical. �It is
because that the geometric measure serves as a lower bound
of the relative entropy of entanglement.� Perhaps the proce-
dure that we have gone through to identify the maximally
entangled states can serve two purposes: �1� to explore cer-
tain cross section of Hilbert space via suitable parametriza-
tion and choice of entanglement measures and �2� to inves-
tigate and compare the behavior of entanglement measures
via the resulting family of maximally entangled states,
whether they are interesting or featureless. In doing so, one
may identify certain distinct states or classify various mea-
sures of entanglement. In the former respect, it remains to be
seen whether the derived family of entangled states can be of
any use in quantum information processing tasks previously
unexplored. In the latter respect, one thus has that the various
entanglement measures discussed in the present paper can be
divided into two different groups: �a� the geometric measure
of entanglement, the relative entropy of entanglement, and
the residual bipartite entanglement and �b� the three-tangle
and the negativity.

While the nonlinear eigenvalues of the W state are infi-
nitely degenerate, eigenvalues of the GHZ-class states are
doubly degenerate and thus no invertible local operations can
match them. As a remark, it is interesting to see that the
whole W-class states have only a single representative in the
above one-parameter family of maximally entangled states,
namely, the W state, which can be regarded geometrically as
the center of the largest full sphere with no unentangled
states.

The W-class states form a boundary set for pure three-
qubit states and the boundary is the limit �→� /2, gh2

→4t1t2t3. Accordingly, the W state is the end point of maxi-
mally entangled pure states �11�. The boundary behavior of
entanglement is different and owing to this, the set of GHZ
states is noncompact. Hence GHZ-class states should have
noncountably infinite collection of maximally entangled
states approaching to the W state.

Several outstanding questions remain: does the minimal
reversible entanglement generating set exist? If so, what does
it consist of? Can the family of states derived in the present
paper constitute in part the generating set? As the consider-
ation of such questions involves reversible conversion of
states in the asymptotic limit, few progresses have been
made. Unfortunately, in the present paper, such questions are
not answered and remain open.
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APPENDIX: SOLUTIONS OF STATIONARITY
EQUATIONS

As indicated above, we have found all six solutions of
stationarity equations for �=0 and �=� /2. In general, these
equations have two types of solutions: the nearest separable
states for highly and slightly entangled three-qubit states,
respectively. There are no slightly entangled states within the
subclass of symmetric states and corresponding solutions are
irrelevant since 	
g and the equality 	=g is never satu-
rated.

At �=0, the stationarity Eq. �30� along the y axis reduces
to

�2gt − 2t2�uy = �uy . �A1�

Either uy =0 or �=2t2−2gt. The second case does not give a
true maximum since �
0.

Similar situation occurs at �=� /2. The stationarity Eq.
�30� along the x axis reduces to

�2t2 + 2gt�ux = �ux. �A2�

The case ux=0 gives three symmetric solutions, while the
remaining case �=2t2+2gt gives three asymmetric solutions.

Thus, at extreme values of the gauge phase stationarity,
equations are factorized to cubic equations. One of the roots
of these cubic equations is either sin �k=0 or tan �k
= � �g� t� /h, where the angle �k defines the weights of com-
putational basis vectors in the local state as follows: �ik�
�cos �k�0�+ei
 sin �k�1�. Hence we know one root of each
cubic equation and we can find the other two by solving a
quadratic equation. In this way, we find all roots of the char-
acteristic polynomial.

1. Solutions in the case of �=0

We list them as follows:
Solution 1 �symmetric, standard�

�q1q2q3� = �000�, 	 = g .

Solution 2 �symmetric, relevant�

�q1q2q3� = �qqq�, �q� =
2t�0� + r+�1�
�r+

2 + 4t2
, 	 =

hr+ + 4t2

�r+
2 + 4t2

,

r+ = h + �h2 + 8t2 − 4gt .

Solution 3 �symmetric, irrelevant�

�q1q2q3� = �qqq�, �q� =
2t�0� + r−�1�
�r−

2 + 4t2
, 	 =

hr− + 4t2

�r−
2 + 4t2

,

r− = h − �h2 + 8t2 − 4gt .

Solution 4 �asymmetric, irrelevant�

�q1q2q3� = �qqq��, �q� =
h�0� − �g + t��1�
�h2 + �g + t�2

,

	2 =
g2h2 + t2�g + t�2

h2 + �g + t�2 , �q�� =
	qq��0�

	
.

Solution 5 �asymmetric, irrelevant, permutation of fourth so-
lution�

�q1q2q3� = �qq�q� .

Solution 6 �asymmetric, irrelevant, permutation of fourth so-
lution�

�q1q2q3� = �q�qq� .

2. Solutions in the case of �=� Õ2

Solutions for �=� /2 are:
Solution 1 �symmetric, standard�

�q1q2q3� = �000�, 	 = g .

Solution 2 �symmetric, relevant�

�q1q2q3� = �qqq�, �q� = ei�/32t�0� + ir��1�
�r�

2 + 4t2
,

	 =
hr� + 4t2

�r�
2 + 4t2

, r� = �h2 + 4gt + 8t2 + h .

Solution 3 �symmetric, irrelevant�

�q1q2q3� = �qqq�, �q� = ei�/32t�0� − is��1�
�s�

2 + 4t2
,

	 =
hs� − 4t2

�s�
2 + 4t2

, s� = �h2 + 4gt + 8t2 − h .

Solution 4 �asymmetric, relevant�

�q1q2q3� = �qqq��, �q� = cos ��0� + ei
 sin ��1�,

	�2 =
g2h2 − 4gt3

g2 + h2 − 3gt
,

cos 2� =
h2 + gt − g2

h2 + g2 − 3gt
, sin 
 =

h

2g
tan � .

Solution 5 �asymmetric, relevant, permutation of fourth so-
lution�

�q1q2q3� = �qq�q� .

Solution 6 �asymmetric, relevant, permutation of fourth so-
lution�

�q1q2q3� = �q�qq� .
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