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Abstract

It is well-known that entanglement of formation (EOF) and relative entropy of entanglement

(REE) are exactly identical for all two-qubit pure states even though their definitions are completely

different. We think this fact implies that there is a veiled connection between EOF and REE. In

this context, we suggest a procedure, which enables us to compute REE from EOF without relying

on the converse procedure. It is shown that the procedure yields correct REE for many symmetric

mixed states such as Bell-diagonal, generalized Vedral-Plenino, and generalized Horodecki states.

It also gives a correct REE for less symmetric Vedral-Plenio-type state. However, it is shown that

the procedure does not provide correct REE for arbitrary mixed states.
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I. INTRODUCTION

Entanglement of formation (EOF)[1] and relative entropy of entanglement (REE)[2, 3]

are two major entanglement monotones for bipartite systems. For pure states ρ = |ψ〉〈ψ|

the EOF EF (ρ) is defined as a von Neumann entropy of its subsystem ρA = trBρ. On the

contrary, REE is defined as minimum value of the relative entropy with separable states;

ER(ρ) = min
σ∈D

tr(ρ ln ρ− ρ lnσ), (1.1)

where D is a set of separable states1. It was shown in Ref.[3] that ER(ρ) is a upper bound

of the distillable entanglement[1]. The separable state σ∗, which yields a minimum value

of the relative entropy is called the closest separable state (CSS) of ρ. Surprising fact, at

least for us, is that although definitions of EOF and REE are completely different, they are

exactly same for all pure states[3]. This fact may indicate that they are related to each

other although the exact connection is not revealed yet. The main purpose of this paper is

to explore the veiled connection between EOF and REE.

For mixed states ρ EOF is defined via a convex-roof method[1, 5];

EF (ρ) = min
∑
i

piEF (ρi), (1.2)

where the minimum is taken over all possible pure-state decompositions with 0 ≤ pi ≤ 1

and
∑

i pi = 1. The ensemble that gives the minimum value in Eq.(1.2) is called the optimal

decomposition of the mixed state ρ. Thus, the main task for analytic calculation of EOF is

derivation of an optimal decomposition of the given mixture. Few years ago, the procedure

for construction of the optimal decomposition was derived[6, 7] in the two-qubit system, the

simplest bipartite system, by making use of the time-reversal operation of spin-1/2 particles

appropriately. In these references the relation

EF (C) = h

(
1 +
√

1− C2

2

)
(1.3)

is used, where h(x) is a binary entropy function h(x) = −x lnx− (1− x) ln(1− x) and C is

called the concurrence. This procedure, usually called Wootters procedure, was re-examined

1 Since REE is defined through another separable state σ, it is called “distance entanglement measure”.

Another example of the distance entanglement measure is a geometric entanglement measure defined as

Eg(ψ) = 1−Pmax, where Pmax is a maximal overlap of a given state |ψ〉 with the nearest product state[4].
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in Ref.[5] in terms of antilinearity. Introduction of antilinearity in quantum information the-

ory makes it possible to derive concurrence-based entanglement monotones for tripartite[8]

and multipartite systems[9]. Due to the discovery of the closed formula for EOF in the

two-qubit system, EOF is recently applied not only to quantum information theory but also

to many scientific fields such as life science[10].

While EOF is used in various areas of science, REE is not because of its calculational

difficulty. In order to obtain REE analytically for given mixed state ρ one should derive its

CSS, but still we don’t know how to derive CSS[11] even in the two-qubit system except very

rare cases[3, 13, 14]. In Ref.[13] REE for Bell-diagonal, generalized Vedral-Plenio, and gen-

eralized Horodecki states were derived analytically through pure geometric arguments[12].

Due to the notorious difficulty some people try to solve the REE problem conversely.

Let σ∗ be a two-qubit boundary states in the convex set of the separable states. In Ref.[15]

authors derived entangled states, whose CSS are σ∗. This converse procedure is extended to

the qudit system[16] and is generalized as convex optimization problems[17]. However, as

emphasized in Ref.[13] still it is difficult to find a CSS σ∗ of given entangled state ρ although

the converse procedure may provide some useful information on the CSS[14].

In this paper we will try to find a CSS for given entangled two-qubit state without relying

on the converse procedure. As commented, EOF and REE are identical for bipartite pure

states although they are defined differently. This means that they are somehow related to

each other. If this connection is unveiled, probably we can find CSS for arbitrary two-qubit

mixed states because we already know how to compute EOF through Wootters procedure.

To explore this issue is original motivation of this paper. We will show in the following that

REE of many mixed symmetric states can be analytically obtained from EOF if one follows

the following procedure:

(1) For entangled two-qubit state ρ let ρ =
∑

j pjρj (ρj = |ψj〉〈ψj|) be an optimal de-

composition for calculation of EOF.

(2) Since ρj are pure states, it is possible to obtain their CSS σj. Thus, it is straight to

derive a separable mixture σ̃ =
∑

j pjσj.

(3) If σ̃ is a boundary state in the convex set of separable states, the procedure is termi-

nated with σ∗ = σ̃.
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(4) If σ̃ is not a boundary state, we consider π = qρ + (1− q)σ̃. By requiring that π is a

boundary state, one can fix q, say q = q0. Then we identify σ∗ = q0ρ+ (1− q0)σ̃.

This procedure is schematically represented in Fig. 1.

The paper is organized as follows. In section II we prove again that EOF and REE are

identical for all pure states, because the results of this section are used in next sections. In

section III we show that the procedure generates the correct CSS for Bell-diagonal states.

In section IV and section V we show that the procedure generates the correct CSS for

generalized Vedral-Plenio and generalized Horodecki states, respectively. In section VI we

consider two less symmetric states, Vedral-Plenio-type and Horodecki-type states. It is

shown that while the procedure generates a correct CSS for the former, it does not give a

correct one for the latter. In section VII a brief conclusion is given.

FIG. 1: (Color online) The schematic diagram of the procedure, by which REE can be computed

from EOF. The polygon at the center is a deformed octahedron[12, 13]. Inside and outside of the

octahedron separable and entangled states reside, respectively. The CSS of the entangled state

resides at the surface of the octahedron.

II. REE AND EOF FOR PURE STATES

In this section we will show that REE and EOF are identical for two-qubit pure states.

This fact was already proven in Theorem 3 of Ref.[3]. We will prove this again more directly,
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because explicit Schmidt bases are used in next sections.

Let us consider a general two-qubit pure state |ψ2〉AB = α1|00〉+α2|01〉+α3|10〉+α4|11〉

with |α1|2 + |α2|2 + |α3|2 + |α4|2 = 1. Then, its concurrence is C = 2|α1α4− α2α3|. Now, we

define

x± =
α∗1α2 + α∗3α4

N±
y± =

λ± − (|α1|2 + |α3|2)

N±
(2.1)

where

λ± =
1

2

[
1±
√

1− C2
]

N 2
± = |α∗1α2 + α∗3α4|2 + |λ± − (|α1|2 + |α3|2)|2. (2.2)

Now, we consider 2× 2 matrix u, whose components uij are

u11 = α1

(
|x+|2√
λ+

+
|x−|2√
λ−

)
+ α2

(
x∗+y+√
λ+

+
x∗−y−√
λ−

)

u12 = α1

(
x+y

∗
+√
λ+

+
x−y

∗
−√
λ−

)
+ α2

(
|y+|2√
λ+

+
|y−|2√
λ−

)
(2.3)

u21 = α3

(
|x+|2√
λ+

+
|x−|2√
λ−

)
+ α4

(
x∗+y+√
λ+

+
x∗−y−√
λ−

)

u22 = α3

(
x+y

∗
+√
λ+

+
x−y

∗
−√
λ−

)
+ α4

(
|y+|2√
λ+

+
|y−|2√
λ−

)
.

Then Schmidt bases for each party are defined as

|iA〉 =
1∑
j=0

vji|j〉 |iB〉 =
1∑

k=0

wik|k〉 (i = 0, 1) (2.4)

where

v =

 u11 u12

u21 u22

 x+ x−

y+ y−

 w =

 x∗+ y∗+

x∗− y∗−

 . (2.5)

Using Eq. (2.4), it is easy to show that |ψ2〉AB and its CSS σ∗ are

|ψ2〉AB =
√
λ+|0A0B〉+

√
λ−|1A1B〉 (2.6)

σ∗ = λ+|0A0B〉〈0A0B|+λ−|1A1B〉〈1A1B|.

Applying Eq. (1.1), one can show easily ER(|ψ2〉) = −λ+ lnλ+ − λ− lnλ−, which is exactly

the same with EOF.
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III. BELL-DIAGONAL STATES

In this section we will show that the procedure mentioned above solves the REE problem

of the Bell-diagonal states:

ρBD = λ1|β1〉〈β1|+λ2|β2〉〈β2|+λ3|β3〉〈β3|+λ4|β4〉〈β4| (3.1)

where
∑4

j=1 λj = 1, and

|β1〉 =
1√
2

(|00〉+ |11〉) |β2〉 =
1√
2

(|00〉 − |11〉) (3.2)

|β3〉 =
1√
2

(|01〉+ |10〉) |β4〉 =
1√
2

(|01〉 − |10〉).

The CSS and REE of ρBD were obtained in many literatures[3, 13, 14] through various

different methods. If, for convenience, max(λ1, λ2, λ3, λ4) = λ3 , the CSS and REE of ρBD

are

πBD =
λ1

2(1− λ3)
|β1〉〈β1|+

λ2

2(1− λ3)
|β2〉〈β2|+

1

2
|β3〉〈β3|+

λ4

2(1− λ3)
|β4〉〈β4| (3.3)

ER(ρBD) = −h(λ3) + ln 2.

Now, we will show that the procedure we suggested also yields the same result. Following

Wootters procedure, one can show that the optimal decomposition of ρBD for λ3 ≥ 1/22 is

ρBD =
4∑
j=0

pj|ψBDj 〉〈ψBDj | (3.4)

where pj = 1/4 (j = 1, · · · , 4) and

|ψBD1 〉 =
√
λ1|β1〉+ i

√
λ2|β2〉+

√
λ3|β3〉+

√
λ4|β4〉

|ψBD2 〉 =
√
λ1|β1〉+ i

√
λ2|β2〉 −

√
λ3|β3〉 −

√
λ4|β4〉 (3.5)

|ψBD3 〉 =
√
λ1|β1〉 − i

√
λ2|β2〉+

√
λ3|β3〉 −

√
λ4|β4〉

|ψBD4 〉 =
√
λ1|β1〉 − i

√
λ2|β2〉 −

√
λ3|β3〉+

√
λ4|β4〉.

All |ψBDj 〉 (j = 1, · · · , 4) have the same concurrence C = 2λ3 − 1 and, hence, the same λ±

(defined in Eq. (2.2)) as

λ± =
1

2

(√
λ3 ±

√
1− λ3

)2

. (3.6)

2 If λ3 ≤ 1/2, ρBD is a separable state.
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The Schmidt bases of |ψBD1 〉 can be explicitly derived by following the procedure of the

previous section and the result is

|0A〉 =
1

N+

[(√
1− λ3 +

√
λ4

)
|0〉+

(√
λ1 − i

√
λ2

)
|1〉
]

|1A〉 =
−1

N−

[(√
1− λ3 −

√
λ4

)
|0〉 −

(√
λ1 − i

√
λ2

)
|1〉
]

(3.7)

|0B〉 =
1

N+

[(√
λ1 + i

√
λ2

)
|0〉+

(√
1− λ3 +

√
λ4

)
|1〉
]

|1B〉 =
1

N−

[(√
λ1 + i

√
λ2

)
|0〉 −

(√
1− λ3 −

√
λ4

)
|1〉
]
,

where the normalization constants N± are

N± =

√
2
√

1− λ3

(√
1− λ3 ±

√
λ4

)
. (3.8)

Thus the CSS of |ψBD1 〉, say σ1, can be straightforwardly computed by making use of Eq.

(2.6);

σ1 = λ+|0A0B〉〈0A0B|+λ−|1A1B〉〈1A1B|

=
1

4 (1− λ3)


µµ∗ µν+ µν− µ2

µ∗ν+ d+ µµ∗ µν+

µ∗ν− µµ∗ d− µν−

(µ∗)2 µ∗ν+ µ∗ν− µµ∗

 , (3.9)

where

µ =
√
λ1 + i

√
λ2 ν± = 2 (1− λ3)

√
λ3 ±

√
λ4 (3.10)

d± = (1− λ3 + λ4)± 4 (1− λ3)
√
λ3λ4.

Similarly, one can derive the Schmidt bases for other |ψBDj 〉 (j = 2, 3, 4) and the correspond-

ing CSS σj. Then, one can show that the separable state σ̃ =
∑4

j=1 pjσj with pj = 1/4 for

all j is

σ̃ =
1

4 (1− λ3)


λ1 + λ2 0 0 λ1 − λ2

0 1− λ3 + λ4 λ1 + λ2 0

0 λ1 + λ2 1− λ3 + λ4 0

λ1 − λ2 0 0 λ1 + λ2

 . (3.11)

Obviously, This is a boundary state in the convex set of the separable states, because

the minimal eigenvalue of its partial transposition, say σ̃Γ, is zero. Thus, the procedure

7



mentioned in the Introduction is terminated with identifying σ∗ = σ̃. In fact, it is easy to

show that σ̃ is exactly the same with πBD in Eq. (3.3). Thus, the procedure we suggested

correctly derives the CSS of the Bell-diagonal states.

IV. GENERALIZED VEDRAL-PLENIO STATE

In this section we will derive the CSS of the generalized Vedral-Plenio (GVP) state defined

as

ρvp = λ1|β3〉〈β3|+λ2|01〉〈01|+λ3|10〉〈10| (λ1 + λ2 + λ3 = 1) (4.1)

by following the procedure mentioned above. In fact the CSS and REE of the GVP were

explicitly derived in Ref.[13] using a geometric argument, which are

πvp =

(
λ1

2
+ λ2

)
|01〉〈01|+

(
λ1

2
+ λ3

)
|10〉〈10| (4.2)

ER(ρvp) = H

(
λ1

2
+ λ2

)
−H(Λ+)

where

Λ± =
1

2

[
1±

√
λ2

1 + (λ2 − λ3)2

]
. (4.3)

Now, we define

a =
λ1Λ+√

λ2
1 + (λ2 − λ3)2

b = −(λ2 − λ3)
√

Λ+Λ−√
λ2

1 + (λ2 − λ3)2
c = − λ1Λ−√

λ2
1 + (λ2 − λ3)2

(4.4)

and Ω2 = 2[(a− c)2 + 4b2− (a− c)
√

(a− c)2 + 4b2]. We also define the unnormalized states

|v±〉 =
√

Λ±|Λ±〉, where |Λ±〉 are eigenstates of ρvp;

|Λ+〉 =
1

N

[(√
λ2

1 + (λ2 − λ3)2 + (λ2 − λ3)

)
|01〉+ λ1|10〉

]
(4.5)

|Λ−〉 =
1

N

[
λ1|01〉 −

(√
λ2

1 + (λ2 − λ3)2 + (λ2 − λ3)

)
|10〉

]
.

In Eq. (4.5) N is a normalization constant given by

N2 = 2

√
λ2

1 + (λ2 − λ3)2

{√
λ2

1 + (λ2 − λ3)2 + (λ2 − λ3)

}
. (4.6)

Then, following Ref.[7], the optimal decomposition of ρvp for EOF is ρvp =∑2
j=1 pj|ψV Pj 〉〈ψV Pj |, where p1 = p2 = 1/2 and

|ψV P1 〉 =
−i
Ω

[
2b− i

{√
(a− c)2 + 4b2 − (a− c)

}]
(|v+〉+ i|v−〉) (4.7)

|ψV P2 〉 =
−i
Ω

[
2b+ i

{√
(a− c)2 + 4b2 − (a− c)

}]
(|v+〉 − i|v−〉) .
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Following section II one can derive the CSS for |ψV Pj 〉 directly. Then, one can realize that

|ψV P1 〉 and |ψV P2 〉 have the same CSS, which is identical with πvp. Thus, the procedure also

gives a correct CSS for the GVP states.

V. GENERALIZED HORODECKI STATES

In this section we will show that the procedure also generates the correct CSS for the

generalized Horodecki states

ρH = λ1|β3〉〈β3|+λ2|00〉〈00|+λ3|11〉〈11| (5.1)

with λ1 + λ2 + λ3 = 1 and λ1 ≥ 2
√
λ2λ3

3. The CSS and REE of ρH were derived in Ref.[13]

using a geometrical argument and the results are

πH =
(λ1 + 2λ2)(λ1 + 2λ3)

2
|β3〉〈β3|+

(λ1 + 2λ2)2

4
|00〉〈00|+(λ1 + 2λ3)2

4
|11〉〈11|

ER(ρH) = λ1 lnλ1 + λ2 lnλ2 + λ3 lnλ3 + 2H

(
λ1

2
+ λ2

)
− λ1 ln 2. (5.2)

Following Ref.[7] one can straightforwardly construct the optimal decomposition of ρH

for EOF, which is ρH =
∑3

j=1 pj|ψHj 〉〈ψHj |, where p1 = p2 = p3 = 1/3 and

|ψH1 〉 =
√
λ1|β3〉+

√
λ2|00〉+

√
λ3|11〉

|ψH2 〉 =
√
λ1|β3〉+

√
λ2e

i2π/3|00〉+
√
λ3e

−i2π/3|11〉 (5.3)

|ψH3 〉 =
√
λ1|β3〉+

√
λ2e

i4π/3|00〉+
√
λ3e

−i4π/3|11〉.

In order to treat |ψHj 〉 as an unified manner let us consider |φ〉 =
√
λ1|β3〉+

√
λ2e

iθ|00〉+
√
λ3e

−iθ|11〉. Then, λ± defined in Eq. (2.2) is

λ± =

(
R±

(√
λ2 +

√
λ3

)
2

)2

(5.4)

where R =
√

2λ1 +
(√

λ2 −
√
λ3

)2
. Since λ± is independent of θ, this fact indicates that

λ± of |ψHj 〉 are equal to Eq.(5.4) for all j. Following section II, it is straightforward to show

3 If λ1 ≤ 2
√
λ2λ3, ρH becomes a separable state.
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that the Schmidt bases of |φ〉 are

|0A〉 =

√
λ1

R
[
R−

(√
λ2 −

√
λ3

)] |0〉+

√
R−

(√
λ2 −

√
λ3

)
2R

e−iθ|1〉

|1A〉 = −
√

λ1

R
[
R +

(√
λ2 −

√
λ3

)] |0〉+

√
R +

(√
λ2 −

√
λ3

)
2R

e−iθ|1〉 (5.5)

|0B〉 = eiθ|0A〉 |1B〉 = −eiθ|1A〉.

Then the CSS σφ of |φ〉 is

σφ ≡ λ+|0A0B〉〈0A0B|+λ−|1A1B〉〈1A1B|

=


λ1+2λ2

2
− λ1

2R2 Aeiθ Aeiθ λ1
2R2 e

2iθ

Ae−iθ λ1
2R2

λ1
2R2 Beiθ

Ae−iθ λ1
2R2

λ1
2R2 Beiθ

λ1
2R2 e

−2iθ Be−iθ Be−iθ λ1+2λ3
2
− λ1

2R2

 (5.6)

where

A =

√
2λ1

4R2

[
2
√
λ2 +

(√
λ2 +

√
λ3

)(
λ1 − 2

√
λ2λ3

)]
(5.7)

B =

√
2λ1

4R2

[
2
√
λ3 +

(√
λ2 +

√
λ3

)(
λ1 − 2

√
λ2λ3

)]
.

Thus, the CSS σj of |ψHj 〉 can be obtained by letting θ = 0, 2π/3, 4π/3, respectively.

Then, σ̃ =
∑3

j=1 pjσj with pj = 1/3 (j = 1, 2, 3) reduces

σ̃ =


λ1+2λ2

2
− λ1

2R2 0 0 0

0 λ1
2R2

λ1
2R2 0

0 λ1
2R2

λ1
2R2 0

0 0 0 λ1+2λ3
2
− λ1

2R2

 . (5.8)

However, σ̃ is not a boundary state in the convex set of the separable states, because the

minimum eigenvalue of σ̃Γ is positive. Thus, we define

σ∗ = xσ̃ + (1− x)ρH . (0 ≤ x ≤ 1) (5.9)

The condition that the minimum eigenvalue of σΓ
∗ is zero fixes x as

x =
R2

2λ1

(
λ1 + 2

√
λ2λ3

)
. (5.10)

Inserting Eq.(5.10) into σ∗, one can show that σ∗ reduces to πH . Thus, our procedure gives

a correct CSS for the generalized Horodecki states.
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VI. LESS SYMMETRIC STATES

In the previous sections we have shown that the procedure generates the correct CSS and

REE for various symmetric states such as Bell-diagonal, GVP, and generalized Horodecki

states. In this section we will apply the procedure to the less symmetric states.

A. Vedral-Plenio-Type State

The first quantum state we consider is

Σ1 = A2|01〉〈01|+A3|10〉〈10|+D (|01〉〈10|+|10〉〈01|) , (6.1)

where A2 +A3 = 1, A2 ≥ A3 and 0 ≤ D ≤
√
A2A3. Of course, if A2 = λ1

2
+λ2, A3 = λ1

2
+λ3,

and D = λ1
2

, Σ1 reduces to ρvp in Eq. (4.1). Thus, we call Σ1 as Vedral-Plenio-type state.

In order to apply the procedure to Σ1 we introduce

R =
√

(A2 − A3)2 + 4D2 tan 2θ =
2D

A2 − A3

λ1 =
1

2
[(A2 + A3) +R] λ2 =

1

2
[(A2 + A3)−R] (6.2)

|λ1〉 = cos θ|01〉+ sin θ|10〉 |λ2〉 = sin θ|01〉 − cos θ|10〉.

Applying Ref.[7], it is possible to derive the optimal decomposition of Σ1 for EOF; Σ1 =

p1|w1〉〈w1|+p2|w2〉〈w2|, where

p1 =
1

2

[
1 +

A2 − A3√
1− 4D2

]
p2 =

1

2

[
1− A2 − A3√

1− 4D2

]
(6.3)

and

|w1〉 =
1

Y+

[(√
ξ+η+ +

√
ξ−η−

)√
λ1|λ1〉+

(√
ξ+η− −

√
ξ−η+

)√
λ2|λ2〉

]
(6.4)

|w2〉 =
1

Y−

[(√
ξ+η− −

√
ξ−η+

)√
λ1|λ1〉 −

(√
ξ+η+ +

√
ξ−η−

)√
λ2|λ2〉

]
.

In Eq. (6.4) ξ±, η±, and Y± are

ξ± = R
√
A2A3 ±D (A2 + A3) η± =

√
A2A3(1− 4D2)±D (A2 − A3) (6.5)

Y2
± = 2A2A3R

[√
1− 4D2 ± (A2 − A3)

]
.
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Following section II, one can derive the CSS σ1 and σ2 of |w1〉 and |w2〉 after long and

tedious calculation. The final results are

σ1 =

cos θ
√
λ1

(√
ξ+η+ +

√
ξ−η−

)
+ sin θ

√
λ2

(√
ξ+η− −

√
ξ−η+

)
Y+

2

|01〉〈01|

+

sin θ
√
λ1

(√
ξ+η+ +

√
ξ−η−

)
− cos θ

√
λ2

(√
ξ+η− −

√
ξ−η+

)
Y+

2

|10〉〈10| (6.6)

σ2 =

cos θ
√
λ1

(√
ξ+η− −

√
ξ−η+

)
− sin θ

√
λ2

(√
ξ+η+ +

√
ξ−η−

)
Y−

2

|01〉〈01|

+

sin θ
√
λ1

(√
ξ+η− −

√
ξ−η+

)
+ cos θ

√
λ2

(√
ξ+η+ +

√
ξ−η−

)
Y−

2

|10〉〈10|.

Then, σ̃ = p1σ1 + p2σ2 simply reduces to

σ̃ = A2|01〉〈01|+A3|10〉|10〉. (6.7)

This is manifestly boundary state in the convex set of separable states. Thus, the procedure

states that σ̃ is a CSS of Σ1. This is exactly the same with theorem 1 of Ref.[14].

B. Horodecki-Type State

The second less symmetric quantum state we consider is

Σ2 =


A1 0 0 0

0 A D 0

0 D A 0

0 0 0 A4

 (6.8)

where A1 +A4 + 2A = 1 and
√
A1A4 < D ≤ A. If A = D = λ1/2, A1 = λ2, and A4 = λ3, Σ2

reduces to ρH in Eq. (5.1). Thus, we call Σ2 as Horodecki-type state. Applying Ref.[7], one

can derive the optimal decomposition of Σ2 for EOF as Σ2 =
∑4

j=1 pj|hj〉, where pj = 1/4

12



for all j and

|h1〉 =
√
A+D|β3〉+

√
A−D|β4〉+

√
A1|00〉+

√
A4|11〉

|h2〉 =
√
A+D|β3〉+

√
A−D|β4〉 −

√
A1|00〉 −

√
A4|11〉 (6.9)

|h3〉 =
√
A+D|β3〉 −

√
A−D|β4〉+ i

√
A1|00〉 − i

√
A4|11〉

|h4〉 =
√
A+D|β3〉 −

√
A−D|β4〉 − i

√
A1|00〉+ i

√
A4|11〉.

In order to consider |hj〉 (j = 1, · · · , 4) all together, we define

|ϕ1〉 =
√
A+D|β3〉+

√
A−D|β4〉+ eiθ

√
A1|00〉+ e−iθ

√
A4|11〉 (6.10)

|ϕ2〉 =
√
A+D|β3〉 −

√
A−D|β4〉+ eiθ

√
A1|00〉+ e−iθ

√
A4|11〉.

For |ϕ1〉 the Schmidt bases are

|0A〉 =
1

2Z+

[√
2
(√

A−D
√

1 + C +
√
A+D

√
1− C

)
|0〉

+e−iθ
{(√

A1 +
√
A4

)√
1 + C −

(√
A1 −

√
A4

)√
1− C

}
|1〉
]

|1A〉 =
1

2Z−

[√
2
(√

A−D
√

1 + C −
√
A+D

√
1− C

)
|0〉 (6.11)

+e−iθ
{(√

A1 +
√
A4

)√
1 + C +

(√
A1 −

√
A4

)√
1− C

}
|1〉
]

|0B〉 =
1

2Z+

[√
2eiθ

{√
A+D

(√
A1 +

√
A4

)
+
√
A−D

(√
A1 −

√
A4

)}
|0〉

+
{
− (A1 − A4) + 2

√
A2 −D2 +

√
1− C2

}
|1〉
]

|1B〉 =
1

2Z−

[√
2eiθ

{√
A+D

(√
A1 +

√
A4

)
+
√
A−D

(√
A1 −

√
A4

)}
|0〉

+
{
− (A1 − A4) + 2

√
A2 −D2 −

√
1− C2

}
|1〉
]
,

where C = 2
(
D −

√
A1A4

)
and

Z2
± =

1

2

√
1− C2

[√
1− C2 ∓ (A1 − A4)± 2

√
A2 −D2

]
. (6.12)

Thus, the CSS σ1(θ)of |ϕ1〉 is

σ1(θ) =

(√
1 + C +

√
1− C

2

)2

|0A0B〉〈0A0B|+
(√

1 + C −
√

1− C
2

)2

|1A1B〉〈1A1B|. (6.13)

13



Similarly, it is straightforward to derive the CSS σ2(θ)of |ϕ2〉 Then, one can show

Π̃ ≡ 1

4

[
σ1(0) + σ1(π) + σ2

(π
2

)
+ σ2

(
−π

2

)]

=


a1 0 0 0

0 a d 0

0 d a 0

0 0 0 a4

 (6.14)

where

a1 =
1

4(1− C2)

[
(1 + C)

(√
A1 +

√
A4

)2

+ (1− C)
(√

A1 −
√
A4

)2

+2(1− C2) (A1 − A4)

]
a4 =

1

4(1− C2)

[
(1 + C)

(√
A1 +

√
A4

)2

+ (1− C)
(√

A1 −
√
A4

)2

−2(1− C2) (A1 − A4)

]
(6.15)

a =
1

2(1− C2)
[(1 + C) (A−D) + (1− C) (A+D)]

d =
2A
√
A1A4 +D (A1 + A4)

1− C2
.

One can show that if A = D = λ1/2, A1 = λ2, and A4 = λ3, Π̃ reduces to Eq. (5.8).

Since Π̃ is not a boundary state in the set of separable states, we define

Π∗ = xΠ̃ + (1− x)Σ2. (6.16)

Then, the CSS condition of Π∗ is

[x (a1 − A1) + A1] [x (a4 − A4) + A4] = [x(d−D) +D]2 . (6.17)

In the Horodecki state limit Eq. (6.17) gives a solution (5.10). Using a1 − A1 = a4 − A4 =

−(a− A) = f/(1− C2) and d−D = g/(1− C2) where

f = C (D − AC) g = C (CD − A) , (6.18)

the solution of x, say x = x∗, can be obtained by solving the quadratic equation (6.17).

Inserting x = x∗ in Eq. (6.16), one can compute Π∗ explicitly, which is a candidate of CSS

for Σ2.
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The CSS of Σ2 was derived in the theorem 2 of Ref.[14] by using the converse procedure

introduced in Ref.[15]. The explicit form of the CSS is

πΣ2 =


r1 0 0 0

0 r y 0

0 y r 0

0 0 0 r4

 (6.19)

where

r1 =
1

F

[
2A1(A1 + A2)(A1 + A2 + A4)−D2(A1 − A4) + ∆

]
(6.20)

r4 =
1

F

[
2A4(A2 + A4)(A1 + A2 + A4) +D2(A1 − A4) + ∆

]
r =

1

F

[
2(A1 + A2)(A2 + A4)(A1 + A2 + A4)−D2(A1 + 2A2 + A4)−∆

]
and y =

√
r1r4. In Eq. (6.20) D and ∆ are

F = 2(A1 + A2 + A4 +D)(A1 + A2 + A4 −D) (6.21)

∆ = D
√
D2(A1 − A4)2 + 4A1A4(A1 + A2)(A2 + A4).

Our candidate Π∗|x=x∗ does not coincide with the correct CSS πΣ2 . Thus, the procedure

does not give a correct REE for Σ2, although it gives correct REE for Bell-diagonal, GVP,

generalized Horodecki, and Vedral-Plenio-type states.

VII. CONCLUSION

In this paper we examine the possibility for deriving the closed formula for REE in two-

qubit system without relying on the converse procedure discussed in Ref.[15–17]. Since REE

and EOF are identical for all pure states in spite of their different definitions, we think they

should have some connection somehow. In this context we suggest a procedure, where REE

can be computed from EOF. The procedure gives correct REE for many symmetric states

such as Bell-diagonal, GVP, and generalized Horodecki states. It also generates a correct

REE for less symmetric states such as Σ1. However, the procedure failed to produce a

correct REE for the less symmetric states Σ2. This means our procedure is still incomplete

for deriving the closed formula of REE.
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We think still the connection between EOF and REE is not fully revealed. If this con-

nection is sufficiently understood in the future, probably the closed formula for REE can be

derived. We hope to explore this issue in the future.
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