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Generalized Hyers-Ulam stability

Mixed type additive and quadratic function 21:
f

Quadratic-additive mapping

n n
(m + (—1>"fxf> =2" ) = 2" (Fx) +f(—x) = 0
Ky o kn=0 i2 i-2
for integer values of n such that n > 2, where fis a function from a normed space X to a
Banach space Y. The solutions of the equation are called additive-quadratic mappings.
© 2013 Elsevier Inc. All rights reserved.

1. Introduction

A classical question in the theory of functional equations is “when is it true that a function which approximately satisfies
a functional equation must be somehow close to an exact solution of the equation?” Such a problem was formulated by Ulam
in 1940 and is called a stability problem of the functional equation (see [23]). In the following year, Hyers [7] gave a partial
solution of Ulam’s problem for the case of approximate additive functions. Subsequently, during the last seven decades,
Hyers’ theorem was generalized by several mathematicians worldwide in the context of a large variety of functional equa-
tions originating from functional analysis, differential equations, analytic number theory and geometry (cf. [1-6,8-22]).

Throughout this paper, assuming that n > 2 is an integer, X is a normed space, and that Y is a Banach space, we consider
the n-dimensional mixed type additive and quadratic functional equation

1 n n
2.1 ( + Z(—nkfxx) =2 i) - 2730 + /() =0, (1)
Ky.....kn=0 i=2 i—2

whose solutions are called quadratic-additive mappings.
In this paper, we investigate a general stability problem for the n-dimensional mixed type additive and quadratic
functional equation (1.1).

2. Generalized Hyers-Ulam stability of equation (1.1)

In this section, we prove the generalized Hyers-Ulam stability of the n-dimensional mixed type additive and quadratic
functional equation (1.1), where n > 2 is some integer.
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Let (s,t) be a fixed element of {(1,1),(1,-1),(-1,-1)} and let ¢ : X" — [0,00) be a function satisfying the conditions:

o0

> 402, 2%, ..., 2K) < o0, (2.1)
i=0
> 272", 2%, ..., 2%%) < o0 (2.2)
i=0

for all x1,x3,...,%, € X. For convenience, we use the following abbreviations for a given mapping f : X — Y:

1

DF (X1, ) 1= §3f<w+§f(1W&>r”ﬂm)fzﬁfduo+ﬂ&»
0 i=2 i=2

ky,....kn=l
1 _

Jmf(x) i (4 sm(f Zsm +f( Zsmx)> + 2 tm(f(ztmx) _f(_ztmx)))

Af(x.y) =flx+y) - f(x) = fy),

Qf(x.y) '*f(XJrY) +fx—y) = 2f(x) = 2f(y),

fe(x) = (f( ) +f(=x)),

1

fo®) =5 (F(%) = f(=x))

for all x,y,x1,X2,...,X;, € X and all integers m > 0.
From these notations, if f(0) = 0, we get
41 sm 41' sm
]mf( ) .’m+]f( ) = - Df(z‘[smx 2Tsmy 07,,.70)S+FDf(_275,mX’ _2Tsmx70,...70)s
2T o T T ZI o T T
—Df(2""x,2%"x,0,...,0)t — ——Df(=2""x,-2""x,0,...,0)t (2.3)
for all x € X, where t;, is the integer defined by
. 1 1

Tjﬁm =J{m+ E — z

forje {-1,1}.
If fis a solution of the functional equation Df (x1,X2,...,X,) = 0 for all X1,x,, ..., x, € X, then fis called a quadratic-additive

mapping.

Lemma 2.1. A mapping f : X — Y is a solution of (1.1) if and only if f. is a quadratic mapping and f, is an additive mapping.

Proof. Let f : X — Y satisfy Df(x;,xa,...,X,) = 0. Since f(0) = g,,o';"o 0, we get
Df.(x,y.0,....0
Qhiy) = OO g
Df,(3¥ XY 0,...,0) - Df,(3£, %Y 0,...,0
Afo(x7y): fO(Z 0’20 )2n72f°(2 02 ) ):0

for all x,y € X, i.e,, f. is a quadratic mapping and f, is an additive mapping.
Conversely, assume that f, is a quadratic mapping and f, is an additive mapping. Then we get

1 n
Df (X1,X2, ..., Xn) = Dfe(X1,X2, ..., Xn) + Dfo(X1,X2, ..., Xn) = Z Qfe (X],Xz +Z(—1)"*x,»>
K oo — i—3
Z Qfe(xz,x3 +Z ‘xi> 42" 320}2()(,, 2, Xn- 1+Z ) +2"2Qfe(Xn-1,Xn)
kn=0
1 n
+ Z Afo(lez(—l)k’XJ =0

i-2
for all x;,x,,...,%, € X, i.e,, fis a solution of (1.1). O

In the following theorems, we will investigate the generalized Hyers-Ulam stability problems of the functional equation
(1.1).
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Theorem 2.2. Suppose f : X — Y is a mapping such that
IIDf (X1,X2, ..., Xn)|| < @(X1,X2,...,Xn) (2.4)

for all x1,x,,...,x, € X with f(0) = 0. Then there exists a quadratic—additive mapping F : X — Y such that
DF(x1,x%2,...,%,) =0

forall x,x,,...,x, € X and
IF(x) = F)| < >_@i(x) (2.5)
i=0

for all x € X, where ®; is the mapping defined by

4175_,’ . . . . 214.1‘
= F((/)(2 six,2%1x,0,...,0) + @ (=2%x,-2%x,0,...,0)) +

+p(=2%x,-2%x,0,...,0)).

;(x) : (p(2%x,27x,0,...,0)

211—1

Proof. It follows from (2.3) and (2.4) that

m+m'—1 | AT si Tosi
g 47 o
H]rnf(x) 7]m+m’f(X)H < Z Zn,] Df(zrmxv 215‘|X7 07 LR} O)S + 2,17,]Df(721“x7 7215'1)(7 07 ey O)S

i=m
-t 2%t mim'—1

+ 2,1_1 Df(z‘n.xx7 2‘17r.ix7 07 e O)t— FDf(_zl’tix7 _2Tt.iX’ O, R O)tH < Z (I),'(X) (26)

i=m
for all x1,x,,...,X, € X and m,m’ € N.

From (2.1), (2.2) and (2.6), it follows that the sequence {J,.f(x)} is a Cauchy sequence for all x € X. Since Y is complete,
the sequence {J,.f(x)} converges in Y. Hence, we can define a mapping F : X — Y by

F(x) := lim Joof (x)

for all x € X. Moreover, by putting m = 0 and letting m’ — oo in (2.6), we get (2.5). From the definition of F, we easily have

DF(X1, Xz, ..., Xn) = }irgl (4’5in(25ix1, - 2“x,,> + 4’“Df<—2“xh . —25"x,.) + 2’”Df<2”x1, o 2“’xn)
—2"in(—2’ix1, o —2“’xn)) -0
for all x1,x5,...,x, € X. O

Theorem 2.3. Let s = —1 or t = 1. Suppose f : X — Y is a mapping satisfying (2.4) for all x1,x3,...,x, € X with f(0) = 0. Then
there exists a unique quadratic-additive mapping F satisfying (2.5) for all x € X.

Proof. The statement of this theorem follows from Theorem 2.2 except the uniqueness of F. Now, let F' : X — Y be another
quadratic-additive mapping satisfying (2.5). Then

m-1 Tosi Tosi
Fx)—JuF(x)=>" (;71 DF (2%ix,2%ix,0,...,0)s + ;ln,l DF (-2%ix,—-2%x,0,...,0)s

i=0

Tt Toti
+ ;M DF'(2%ix,2%ix,0,...,0)t— %DF’(—szfx, —2%ix,0,..., 0)r> =0

for all m e N.
From this and (2.5), we obtain

IF(x) = F ()l < nF () = JuF ()l

—sm

42 (IF = F)@")I + 1(f = F)Y™0) | + 1(f = F)(=2"X)[| + [|(f = F)(=2"%)]))

+%(|\(f—F)(2"”x)\| [ =F)RT0)N + 1 = F)(=2"%)] + [I(f = F)(=2"%)]]) (2.7)

<
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for all x € X and all m € N.
It follows from (2.5) and (2.7) that

[IF(x) Z 47 (@;(2°"x) + D (—2°"%)) + 2-m ((D,»(Zt’"x) +(I),'(72""x)))
i=0
for all x € X and all m € N. Taking the limit as m — oo in the above inequality and using the equality F(0) = 0 = F'(0), we can
conclude that F(x) = F'(x) for all x € X. This proves the uniqueness of F. [
By the similar method used in the proof of Theorems 2.2 and 2.3, we prove the following corollary.

Corollary 2.4. Let p ¢ {1,2} be a nonnegative real number. Suppose f : X — Y is a mapping such that
IDf (X1, X2, xa) | < O(IX1]]° + 1% ][P + -+ [[xa”) (2.8)

for all x1,%,,...,x, € X and for some constant 6 > 0, where f(0) = 0 is assumed provided p = 0. Then there exists a unique
quadratic-additive mapping F such that

p
IFe0 9l < (g 1) s 29)

forallx e X.

Proof. If p < 1 or p > 2, then this corollary follows from Theorem 2.3. In view of Theorem 2.2, if 1 < p < 2, then there exists a
mapping F satisfying DF(x1, Xz, ...,Xx,) = 0 for all x1,%,,...,x, € X as well as (2.9) for all x € X with F(0) = 0.
Now, let F' : X — Y be another mapping satisfying (2.9) with F'(0) = 0. Using Lemma 2.1, (2.7) and (2.9), we obtain

1P -l < (g ) (27)+ () ) 72

for all x € X and all m € N. Taking the limit as m — oo in the above inequality and using the equality F(0) = 0 = F'(0), we can
conclude that F(x) = F'(x) for all x € X, which proves the uniqueness of F. O
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