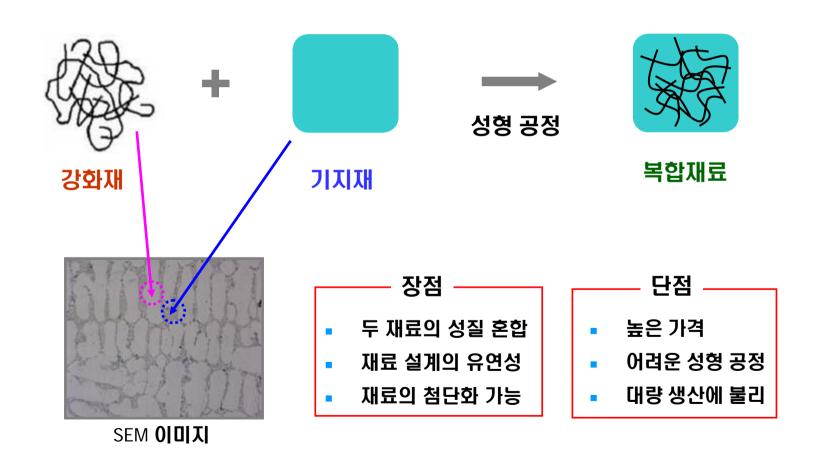
복합재료의 정의 및 특징

정의

■ 단어 그대로의 의미

Consisting of two or more distinct materials


■ 재료적 의미

성질이 서로 다른 두 가지 이상의 물질이 거시적으로 혼합되어 보다 유용한 기능을 발현하는 재료

■ 합금재료와 복합재료의 차이점

	합금 재료	복합 재료		
혼합	화학적 혼합	기계적 혼합		
특징	기존 물질이 소멸	기존 물질이 보존		
미세조직	균질	비교적 불균질		

■ 복합재료의 기본 개념

복합재료의 역사

■ 복합재료의 초창기 실례

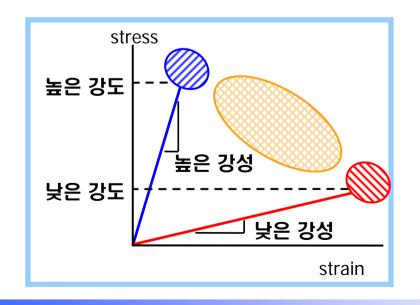
초창기 복합재료의 선전 구호

- □ 유리 섬유의 보강 커다란 유리는 잘 깨지지만 머리카락처럼 가늘게 하면 매우 강함 따라서 복합재료의 기계적 강도를 크게 증가시킴
- □ 에폭시 수지 복합재료 무게의 경량화
- → 두 재료의 장점을 동시에 지니는 복합재료

복합재료의 장 단점

■ 장점

- □ 경량화 --- 높은 비강도, 비강성
- □ 물성 설계의 가능성
- □ 풍부한 하중 전달 경로 --- 섬유와 섬유 기지재와 섬유
- □ 재료의 생명 연장 --- 부식에 강한 특성
- □ 부품수 감소 --- 가격 감소
- □ 재료에 열 혹은 전기적 특성 부여


■ 단점

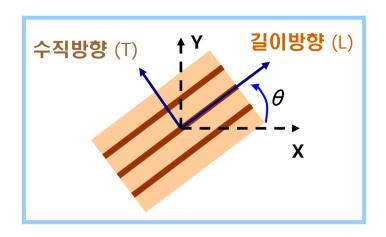
- □ 고가의 자재 --- 높은 가격의 섬유
- □ 환경에 의한 기지재의 물성저하 가능
- □ 접착의 어려움
- □ 수학적 해석의 어려움 --- 유한요소 예측이 실제와 다름

복합재료의 물성 설계

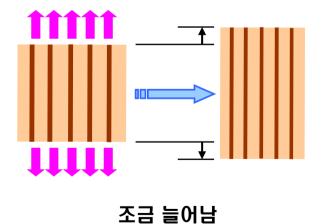
복합재료는 서로 다른 물성을 가지는 재료들의 혼합 고 조합 및 비율에 따라 다양한 물성의 설계가 가능

정해진 물성 값은 없다 !!

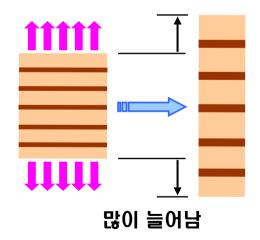
--- 강화재 --- 높은 강도 및 강성


--- 기지재 --- 낮은 강도 및 강성

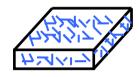
— 복합재료 --- 넓은 범위의 물성 설계 가능


섬유의 방향에 따른 특성

섬유의 방향이란 ?

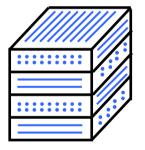

섬유는 가늘고 길기 때문에 길이방향과 수직방향으로의 변형이 다르다.

■ 섬유방향으로 당긴 경우


■ 섬유의 수직방향으로 당긴 경우

섬유에 의한 물성 분류

등방성 (Isotropy)


⊖에 상관없이 물성은 유사

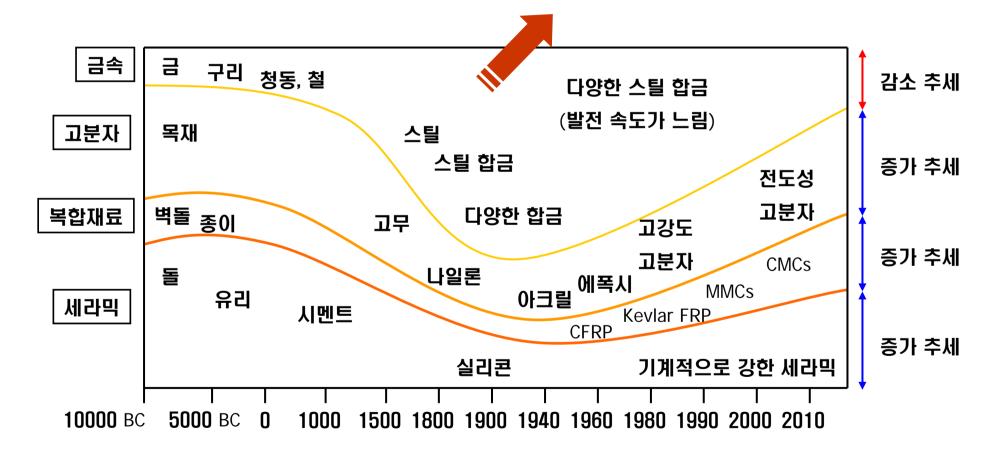
단섬유가 자유롭게보강된 복합재료

이방성 (Anisotropy)

⊖에 따라 물성이 변함

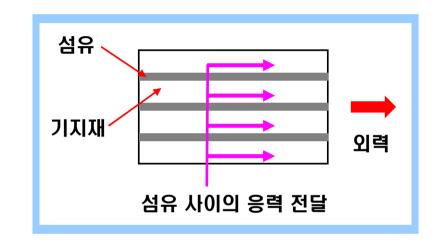
직교이방성 판이 적충된 복합재료

직교이방성 (Orthotropy)


- ⊖가 0°. 90°에서는 등방성
- ▶ 하지만 두 방향에서의 물성은 큰 차이를 보임

긴 섬유가 일방향으로 보강된 복합재료

복합재료의 중요성


- 고분자, 복합재료, 세라믹의 중요성 꾸준히 증가
- 금속의 중요성 상대적으로 감소

복합재료의 구성 소재

기지재 (Matrix)

- 역할
 - □ 섬유를 고정시키는 바인더 역할
 - □ 섬유 사이의 응력 전달
 - □ 외부로부터 섬유를 보호
 - □ 기계적인 마모에 저항
- 기계적 특징
 - □ 평면내의 전단 특성에 중요한 역할
 - □ 압축응력에서 섬유의 좌굴 억제
 - □ 인장응력에서 저항력 미흡

- 강화재와 상호관계
 - □ 원하는 물성을 얻기 위하여 두 재료의 적절한 혼합 비율이 매우 중요
 - □ 손상허용 구조 설계를 위한 두 재료의 상호작용이 중요

기지재 (Matrix)

■ 종류

- 가공성이 매우 좋은 열가소성 고분자를 주로 사용
- 금속과 세라믹 기지는 주로 고온에서 사용

고분자 수지 (Polymer)	열경화성 수지 (Thermosetting)	에폭시 (주로 우주 항공기에 사용) 폴리에스터, 비닐에스터 (자동차, 선박, 화학에 사용) 페놀 (기능성 복합재료에 사용) 폴리이미드 (높은 온도의 우주용으로 사용)
		나일론, 열가소성 폴리에스터 (PET, PBT) , 폴리아세탈 PAI, PEEK, PSUL, PPS and PEI etc
금속 (Metal)		알루미늄, 타이타늄 합금, 마그네슘 합금 스테인리스강 - 고온에서 사용 (300~500°C)
세라믹 (Ceramic)		산화 알루미늄, 탄소, 실리콘카바이드

PAI: Polyamide imide, PEEK: Polyether ether ketone, PSUL: Polysulfone,

PPS: Polyphenylene sulfide, PEI: Polyether imide

기지재 (Matrix)

■ 여러 기지재의 특징

탄소	단위 질량당 높은 열 용량 로켓 노즐, 항공기의 클러치나 브레이크 패드에 사용	3000℃ 이상
세라믹	일반적으로 취성이 강함 주로 극한 환경(고온 등)에서 사용	1093~1649°C 이상
유리	낮은 강성 보강재는 탄소 섬유, 산화금속 섬유 사용	
금속	산화 환경에서 고온용 재료에 사용	800~1371° C
고분자	가장 많이 사용되고, 가격이 저렴 좋은 성형성 및 기계적 물성, 강한 접착력	427° ℃ 0 ರೇ

강화재 (Reinforcement)

- 역할
 - □ 재료의 강도, 강성 보강에 중요한 역할
- 강화재 선정 기준
 - □ 비중 → 소재의 무게
 - □ 인장강도 및 인장강성 → 복합재료 물성 설계
 - □ 압축강도 및 압축강성
 - □ 피로강도 및 피로파괴 메커니즘
 - □ 전기 및 열 전도도 → 기능성 복합재료 설계
 - □ 가격 → 대량생산 가능성 판별
- 기지재와 상호관계
 - □ 원하는 물성을 얻기 위해 강화재의 종류, 양, 적층 각도 등을 결정

강화재 (Reinforcement)

- 종류
 - □ 섬유 (Fiber)
 - 길이가 긴 실린더형
 - 취성이 강한 기지재와 복합재료를 형성 할 경우,
 크랙의 발생을 억제
 - □ 구상입자 (Particle)
 - 길이가 긴 부분이 없고 거의 구형
 - 상대적으로 크랙이 발생하기 쉬움
 - 하중을 받아도 인장이 매우 적어서 기지재의 소성변형을 억제
 - 단단한 입자가 보강될 경우 집중응력을 받아서 강도의 보강이 약함
 - □ 판상입자 (Flake)
 - 구상입자보다 더욱 납작한 형태
 - 구상입자와 유사한 특징

섬유 강화재의 물성 원리

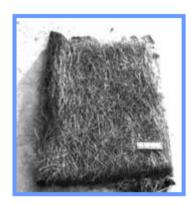
거대 형태

기지재와 접촉면이 넓음 단위 체적당 표면적 : A / V 섬유 물성의 원리 → 응력전달이 잘됨 20 □ 형태 15 물성이 좋음 10 5 물성이 떨어짐 0.01 0.1 10 100 1000 Aspect ratio: L/D □ 원리 섬유의 정렬성 증가 무질서한 섬유의 분포 인장 강도 증가

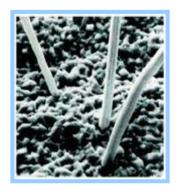
미세 섬유 형태

섬유 강화재의 분류

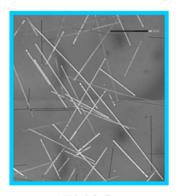
■ 형태에 따른 섬유의 분류


□ 휘스커: 결정에서 자라는 짧은 섬유

□ 단섬유 : 긴 섬유를 잘라서 얻은 짧은 섬유


□ 장섬유 : 긴 섬유

□ 스트랜드 : 긴 섬유의 다발

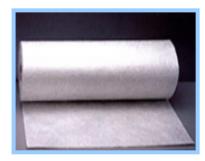

□ 잘게 잘린 스트랜드 : 스트랜드를 잘게 자른것

장섬유 매트

휘스커

단섬유

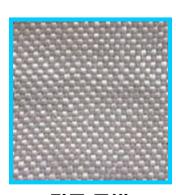
장섬유



잘게 잘린 스트랜드

섬유 강화재의 분류

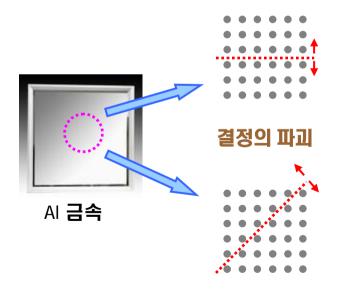
- **형태에 따른 섬유의 분류** (Cont'd)
 - □ 로빙: 스트랜드를 20가닥 정도 합친 것
 - □ 직조 로빙: 로빙으로 짠 직물형태
 - □ **잘게 잘린 스트랜드 매트** (Chopped strand mat)
 - □ 필라멘트 매트 : 긴 스트랜드를 일방향으로 굳힌 매트
 - □ **얀**(Yarn) : 뜨개실과 같은 형태의 직물
 - □ 패브릭(Fabric) : 로빙으로 만든 얇고 넓은 직물


주로 적층 성형에 사용

스트랜드 매트

로빙

직조 로빙


O‡

패브릭

섬유 강화재의 발견

- 최초의 섬유 발견
 - □ 고양이 수염과 유사
 - □ 물성은 좋지만 제조가 어려움
 - □ 수 mm, 수 cm 길이만 제작 가능
- 휘스커 강도의 원리

- 전위 : 원자 배열의 교란
 - → 전위에서 시작된 어긋남이 점차 전달
- 전위에 의한 금속의 강도 저하 발생
- 전위를 많이 만들면 오히려 서로 엉켜서 단단해짐
 - → 대장장이가 달구고 두드리는 것을 반복하는 원리
- 전위가 없어도 강도가 향상됨
 - → 휘스커는 전위가 거의 없는 가늘고 긴 형태

유리섬유

- 유리섬유 (Glass fiber)
 - □ 1930년대부터 꾸준히 사용되어 온 강화재
 - □ 다른 섬유에 비하여 강도가 약함
 - □ 낮은 젖음성 때문에 다른 화학 물질과 함께 사용
 - □ 주로 고분자 수지와 복합재료 제조
 - □ 일반적인 물성을 가지는 제품에 많이 사용

장점

- 제조의 편리함
- 낮은 가격
- 높은 인장 강도

단점

- 낮은 강성계수
- 낮은 내 마모성
- ▶ 낮은 젖음성

유리섬유의 분류

■ 유리섬유의 분류

□ E-glass fiber : 수지 주입 방식으로 제조하는

복합재료의 주 재료로 사용

→ 아주 강하지는 않지만 저렴함

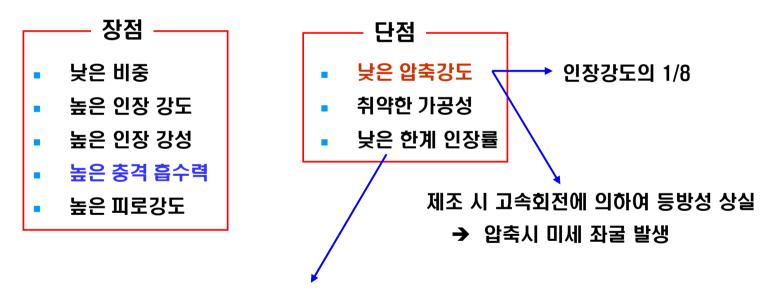
□ S-glass fiber : 항공 산업과 미사일 개발에 사용

→ 가벼우면서 매우 큰 강도를 보유

→ 가격이 높음

□ S-2 glass fiber : 가격이 낮으면서 S-glass의 성능과 유사

→ 주로 다른 섬유와 혼합되어 사용 (Hybrid form)


유리섬유 로프

유리섬유 테잎

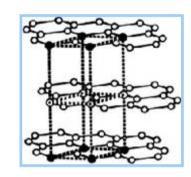
케블라섬유

- 케블라섬유 (Kevlar fiber: Aramid fiber의 대표)
 - □ 1970년대 초 Dupont 회사에 의해 처음 소개
 - □ 특징

구조적으로 견고하지만 깨지기 쉬움

→ 고분자 체인이 길고 강하게 형성 되어 있음

케블라섬유의 종류


■ 케블라섬유의 종류

종류	특징	응용
Kevlar 29	낮은 기계적 강성	
Kevlar 49	높은 기계적 강성	항공기, 헬리곱터, 압력용기
Kevlar 129	매우 높은 기계적 강도	
Kevlar 149	매우 높은 기계적 강성 낮은 흡습성	항공기, 헬리곱터, 스포츠 용품
Kevlar Hp	Kevlar 49 와 유사한 물성 부드러운 표면처리 높은 충격저항력	스포츠 용품 좋은 물성이 필요한 해상분야

- Kevlar 49를 일반적으로 많이 사용
- Kevlar 49는 로빙, 얀, 패브릭의 형태로도 사용

탄소섬유

- 탄소섬유 (Carbon fiber)
 - □ 1970년대부터 사용되어 온 강화재
 - □ 첨단 복합재료의 시작
 - □ 기계적 물성이 매우 뛰어남
 - → 판상의 층을 이루는 미세구조를 가지기 때문에 기계적 물성이 뛰어남

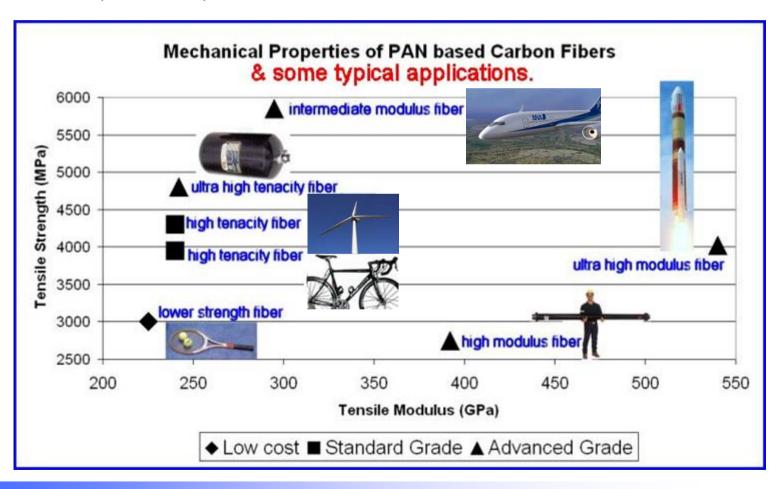
탄소섬유의 미세구조

장점

- 낮은 밀도
- 높은 인장 강도
- 높은 인장 강성
- 낮은 열팽창계수
- ▶ 높은 내열성
- 높은 내 마모성
- 높은 전기전도도

단점

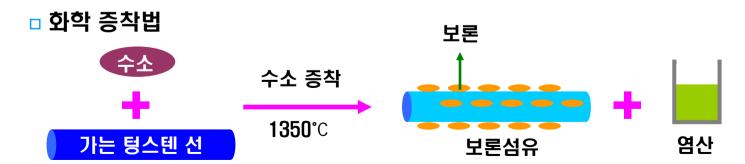
- 낮은 한계 인장률
- 높은 제조 비용
- 낮은 젖음성


탄소섬유의 분류

■ 탄소섬유의 성능에 따른 분류

종류	강도 (MPa)	강성 (GPa)	비강도			
GP (일반용)	다른 종류에 비해 낮은 강도와 강성 다른 종류에 비해 높은 한계 인장률					
HP (PAN 계 고성능)	다른 종류에 비해 높은 강도와 강성					
HP (Pitch 계 고성능)	다른 종류에 비해 낮은 한계 인장률 PAN 계 HP 가 Pitch 계 HP 보다 좋은 물성 보유					
HM (고강성)	Low	300 이상	r < 0.01			
IM (중강성)	Low	100 이상 300 이하	r > 0.01			
LM (저강성)	Low	100 0 Ծ	r << 0.01			
HT (고강도)	3000 이상	Low	0.02 < r < 1.5			

탄소섬유의 분류


■ 탄소섬유(PAN 모재)의 강도별 분류

보론섬유

- 보론섬유 (Boron fiber)
 - □ 1960년대에 미국에서 최초로 개발
 - 보론 섬유는 지름이 50~200 μm 범위
 - → 다른 일반섬유의 10배 정도 크기
 - □ 3000~3500MPa **강도**, 400GPa **강성**
 - □ 다른 섬유에 비해 밀도가 큰 것이 단점
 - □ 우주 산업에 많이 쓰이지만 비싼 가격 때문에 한계

■ 보론섬유 제조

실리콘카바이드(SiC) 섬유

- 실리콘카바이드 섬유
 - 가는 섬유: 10~15 μm의 지름, 180GPa의 강성
 - □ 굵은 섬유 : 140 µ m의 지름, 450GPa**의 강성**
 - □ 높은 산화 저항력, 고온 물성 유지력 (1200~1400°C)
 - → 고온용 금속, 세라믹 복합재료에 사용
 - □ 화학 증착법으로 제조
 - □ 최근에 개발되어서 응용 분야는 이제부터 출발 단계
 - □ 실리콘카바이드 장섬유를 상업적으로 제조 가능
 - □ 실리콘카바이드 휘스커
 - **지름** --- 8~20 µ m
 - **길이** --- 30 µ m

압출, 롤링, 단조 등의

금속 성형 공정에 적용 용이

산화알루미늄(Al₂O₃) 섬유

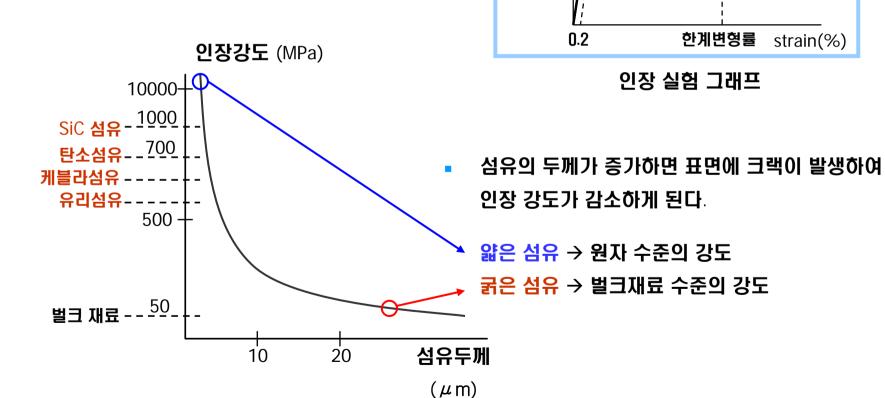
- 산화알루미늄 섬유
 - □ 주로 금속 복합재료의 강화재로 사용
 - □ Al₂O₃ / SiO₂ 조성 비에 따라서 다양한 물성 가능

■ 1400~1700°C 까지 사용 가능

순수 Al₂O₃은 매우 비활성

→ 1200°C 까지 안정

제조사	유통 명칭	형태	조성 비
Dupont	Fiber FP	С	100% Al ₂ O ₃
	PRD-166	С	20% ZrO ₂
3M	Nextel 312	DC	24% SiO ₂ , 14% B ₂ O ₃
	Nextel 440	DC	28% SiO ₂ , 2% B ₂ O ₃
Sohio	Fibermax	DC	50% SiO ₂
ICI	Saffil	DC	4% SiO ₂
Sumitomo	Sumika	С	15% SiO ₂
Denka	Alcen	DC	20% SiO ₂
Mitsui		С	100% Al ₂ O ₃


강도 40% 증가

C : **연속**

DC: 불연속

섬유의 일반적인 물성

- 섬유의 두께와 인장강도
 - □ 두께가 얇아질수록 비강도 증가

Engineering stress

강성

Fracture

인장강도

항복응력

섬유의 물성 비교

■ 섬유의 평균적 물성치

인장 강도 / 밀도

	종류	인장 강도 (MPa)	강성 (GPa)	밀도 (g/cm³)	비강도 (x 106)
	유리 섬유	3450~4300	73~87	2.5	1.4~1.8
	탄소 섬유	1900~5600	230~760	1.8~2.1	1.1~1.3
강화용	케블라 섬유	3450~3620	130~180	1.46	2.3
섬유	보론 섬유	3450	400	2.5	1.4
	SiC 섬유	3440	400	3.3	1.1
	Al ₂ O ₃ 섬유	1400	380	3.95	0.4
금속	알루미늄	260~410	69~73	2.71	0.1~0.15
	스틸 (일반)	450~830	207	7.87	0.06~0.1

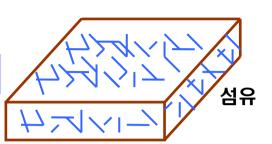
- □ 탄소섬유의 물성이 다양하지만, 생산 가격이 높음
- □ 섬유는 금속에 비해서 가볍고, 기계적 물성이 뛰어남

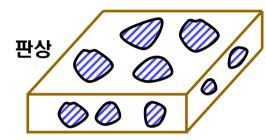
기계적 물성 증가 섬유의 물성 변화 가격 감소 • PEt 케블라 PBT Kevlar® 20 정렬성 고분자 섬유 S-glass 실리콘카바이드 유리 SiC whiskers Celion • • HTS T-300 • B on C Ouartz ▲ T-75 Fortafil CG-5 Celion G50 T-50 HMS E-glass Specific strength/106 cm • T-50 Pan 탄소 (PAN) SiC on C . rayon • Borsic Fortafil CG-3 K Pitch VSC-32 • GY-70 · Al2O3 whiskers Steel wire 탄소 (Pitch) Nextel · Pitch • Fe₈B₂ ZrO₂• · Al2O3 · Stainless steel BN · Mo 10 20 Specific modulus/108 cm

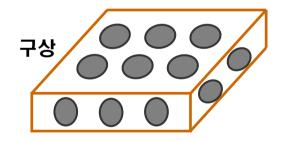
기지재와 강화재의 성형성

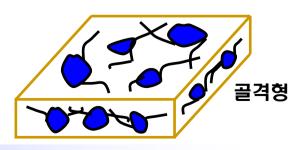
- 기지재와 강화재의 선정 기준
 - □ 높은 성형성
 - □ 소비자가 요구하는 물성의 만족 가능성

강화재 기지재		유리	탄소	케블라	유리+케블라	보론	실리콘 카바이드	알루미나
	불포화 폴리에스텔	상	Ŏŀ	하	Ŏŀ			
플라스틱	에폭시	중	상	중	중	중	٥ŀ	٥ŀ
(고분자)	폴리아미드		중			δŀ		
	열가소성 수지	중	Ōŀ	δŀ				
금속	알루미늄		중			KHO	중	중
	티타늄					중	중	
	마그네슘					δŀ	٥ŀ	٥ŀ

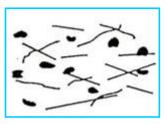

복합재료의 분류 및 특성


분류 1: 강화재의 입자형태


- 섬유(Fiber) 강화
 - □ 장섬유나 단섬유로 강도를 보강
- 플레이크(Flake) 강화
 - □ 복합재료 기지내에 납작한 강화재료를 넣어 보강

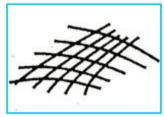


- □ 구형 미립자를 넣어서 기계적 화학적 성질을 강화
- 골격형(Skeletal) 강화
 - □ 연속적인 골격 모양의 강화섬유를 넣어 보강

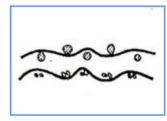

분류 2: 강화재의 보강형태

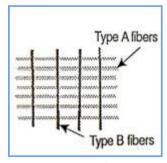
Random short fiber

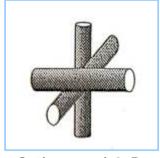
Aligned short fiber


Fiber/particle hybrid

Short fiber hybrid


Unidirectional continuous fiber

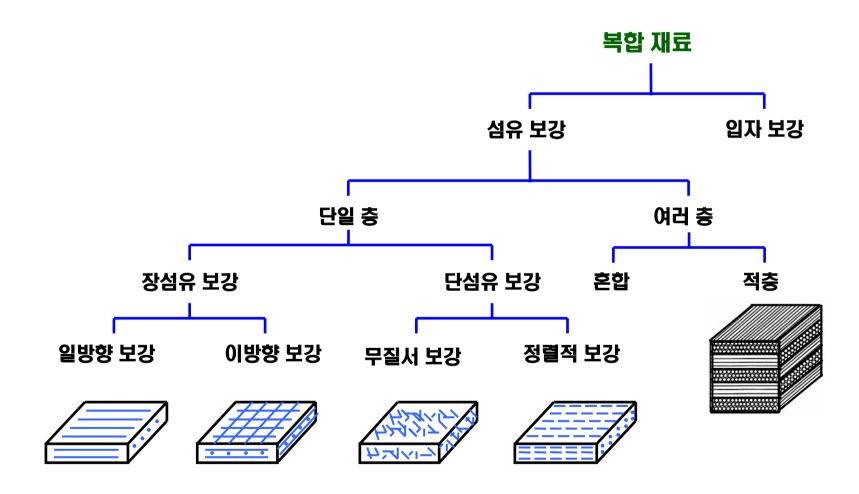

Filament winding


Long/interpenetrating

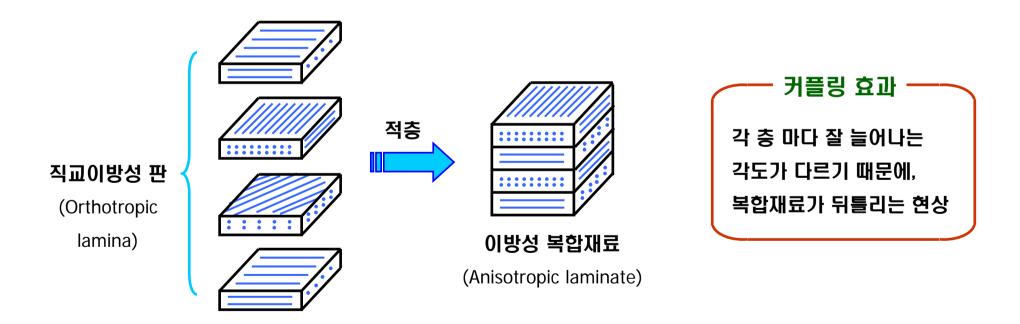
Woven fabric


Continuous/hybrid

Orthogonal 3-D



3-D Weave


3-D Braid

분류 1 & 2 : 두 분류의 종합

분류 1 & 2 : 적층 복합재료

- 적충 복합재료 (Laminate)
 - □ 섬유가 보강된 얇은 판을 여러 개 쌓아서 만든 복합재료
 - □ 각 판은 섬유의 종류 및 방향에 따라서 서로 다른 물성을 가짐

분류 3 : 기지재와 보강재

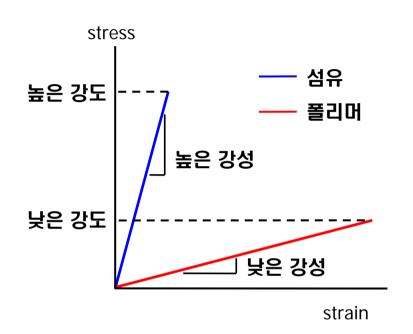
■ 설유: G (glass), B (boron), C (carbon), K (kevlar), SiC (silicon carbide), A (aluminum)

Plastic (P): Epoxy, Polyester, Phenolic, Polyamide

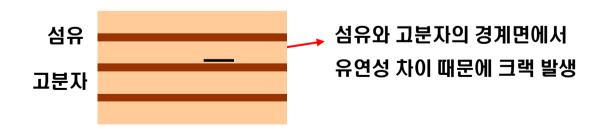
Metal (M): Aluminum, Magnesium, Copper, Titanium

Year		← 1 ^s	t age ———	→	-2 nd age		3 rd age
	19	40 1	950	1960	1970	1980	1990
FRP	GFRP BFRP CFRP KFRP SFRP AFRP						
FRM	BFRM SFRM AFRM						→

섬유강화 플라스틱

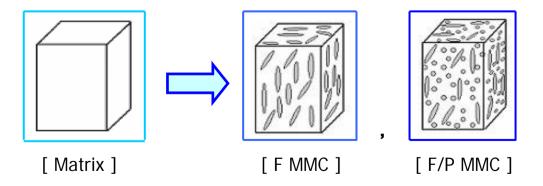

- GFRP (유리섬유강화 플라스틱)
 - □ Glass fiber reinforced plastic
 - □ 초창기 복합재료의 보강재로 등장한 이후 꾸준히 사용
 - □ 경제적으로 가장 유리한 경량, 고강도 구조재료
 - □ 유리섬유가 처음 복합재료에 사용된 이유
 - 양모, 솜 그리고 나일론 등 보다 강함
 - 인장 정도가 강화재로서 적합
 - □ 불포화 폴리에스텔 수지를 처음 기지재로 사용
 - ▶ 상은, 상압에서 성형이 가능
 - 젖음성이 좋아서 섬유의 효과 증가

섬유강화 플라스틱

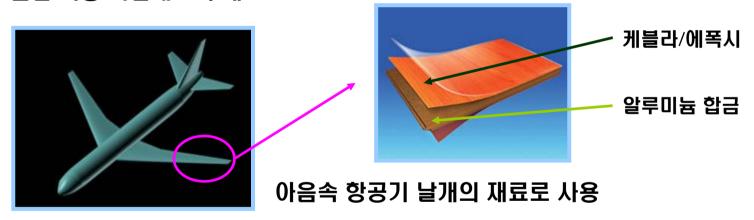

- CFRP (탄소섬유강화 플라스틱)
 - Carbon fiber reinforced plastic
 - □ 첨단 복합재료의 시작
 - □ 경량, 고강도, 고강성 재료 → 우주항공에서 필수
 - □ 다양한 물성의 탄소섬유가 존재 → 물성 설계에 유리
- FRTP (섬유강화 열가소성 복합재료)
 - □ Fiber Reinforced Thermoplastic
 - □ 일반 복합재료와 달리 열가소성 수지를 기지재로 사용
 - □ 성형시 유동이 매우 좋기 때문에 다루기 쉽고 생산성이 우수
 - □ 상대적으로 저온에서만 사용가능

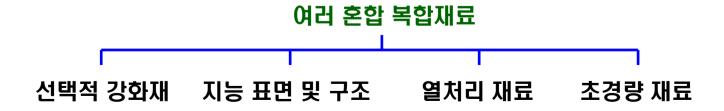
고분자 복합재료

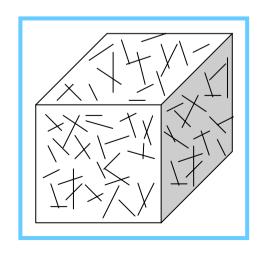
- PMCs (Polymer matrix composites)
 - □ **앞에서 설명한 모든** FRP를 **포함**
 - □ 가장 많이 응용되는 복합재료
 - □ 크고 복잡한 형태도 제조 가능
 - 강화재 --- 높은 비강도 및 비강성
 - 고분자 --- 부식 및 수분침투 방지
 - PMCs --- 가벼우면서 강한 재료

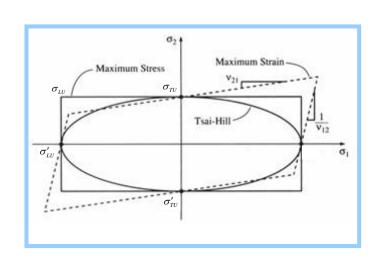


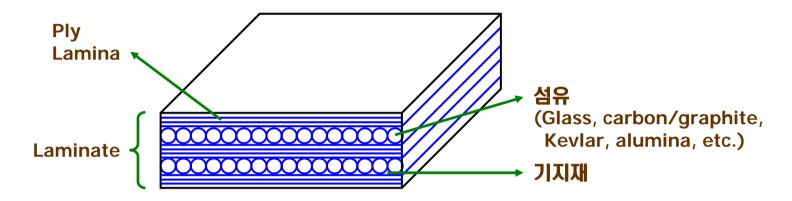
□ 유연성의 차이가 커서 크랙의 발생 가능성이 높음


금속 복합재료


- MMCs (Metal matrix composites)
 - □ PMCs 만큼 응용되지는 않지만 점점 응용 범위가 증가하는 추세
 - □ 가격이 비싸지만 제조 기술의 발달로 점차 낮아지고 있음
 - □ 섬유 강화, 입자 강화, 섬유/입자 혼합 강화
 - 강화재 --- 높은 비강도 및 비강성
 - MMCs --- **열에 강함**, <mark>마모에 강함</mark>, 가벼움


혼합 복합재료


- Hybrid composites
 - □ 하나의 기지재에 두 가지 이상의 강화재가 혼합된 복합재료
 - □ 혼합 적층 복합재료의 예



복합재료의 기초 역학

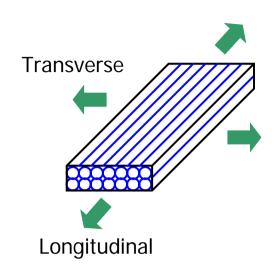
일방향 복합재료

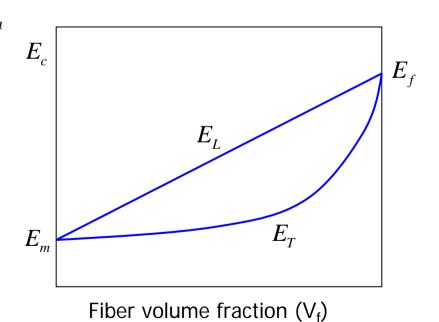
■ 일방향 복합재료의 거동

■ 강성(Stiffness) 예측

□ 강성이란?

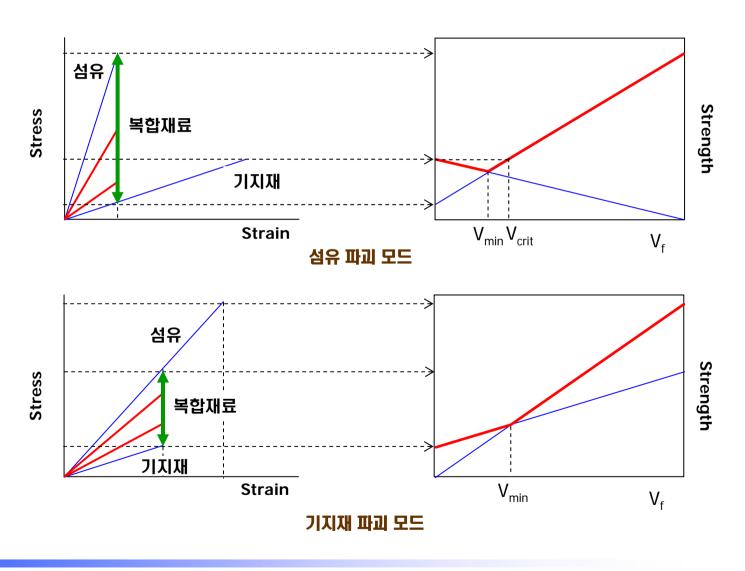
재료에 변형을 가할 때 재료가 그 변형에 저항하는 정도 (Stress-strain 곡선의 기울기)



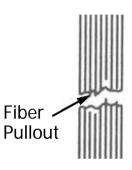

$$\varepsilon_f = \varepsilon_m = \varepsilon_c$$
 \rightarrow $E_c = E_f V_f + E_m V_m$

□ 횡 방향 강성 (Transverse stiffness)

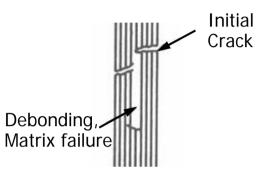

$$\sigma_f = \sigma_m = \sigma_c$$


$$\frac{1}{E_c} = \frac{V_f}{E_f} + \frac{V_m}{E_m}$$

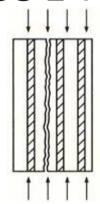

■ 강도(Ultimate strength) 예측



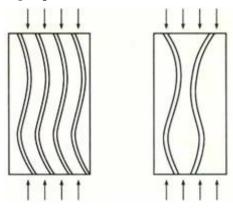
■ 파괴 모드


□ 길이방향 인장 하중에 의한 파괴

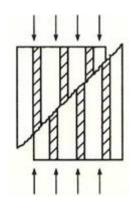
1. Brittle



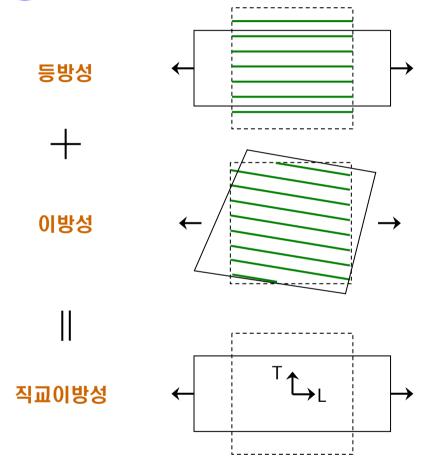
2. Brittle and fiber pull out



3. Fiber pull out and debonding


□ 길이방향 압축 하중에 의한 파괴

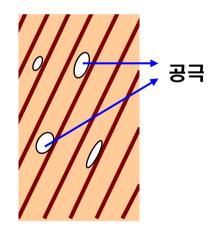
1. Transverse tensile mode



Extension mode Shear mode 2. Fiber microbuckling

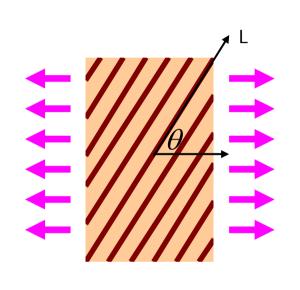
3. Shear failure

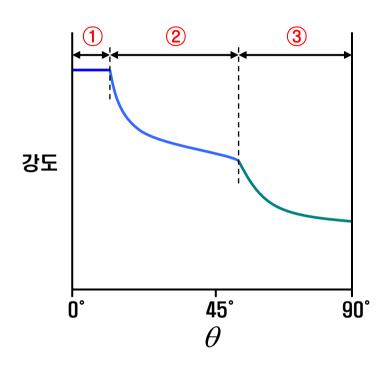
직교이방성 라미나


직교이방성 라미나 : 섬유의 배열 방향 --- 등방성

그 외의 방향 --- 이방성

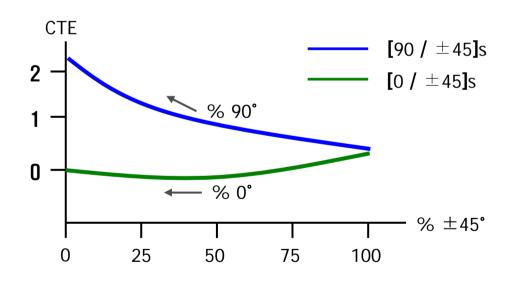
복합재료의 기계적 특성


공극(Void)의 영향


- 공극
 - □ 복합재료는 두 재료의 혼합을 통해 성형
 - □ 성형을 하는 동안 공극이 내부에 갇힐 가능성이 높음

- 측정 밀도와 이론적 밀도의 차이로 공극률 계산
- 공극 부분에 응력 집중 → 피로 저항력 저하
- 공극에 수분 침투 용이 → 수분에 의한 물성 저하
- 햇빛에 의한 색의 변질
- 강도 및 강성 데이터가 분산 → 정확한 물성 측정 어려움

섬유의 방향에 따른 물성

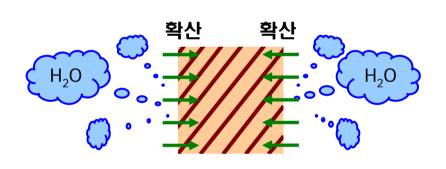


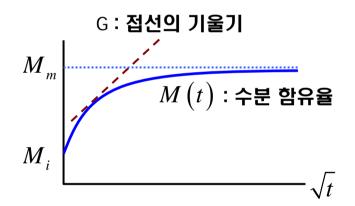
- ① : 섬유의 방향과 하중의 방향이 거의 일치 → 섬유가 인장응력을 받음 → 물성 유지
- ② : 섬유의 방향과 하중의 방향이 불일치 → 기지재가 전단응력을 받음 → 물성 저하
- ③ : 섬유의 방향과 하중의 방향이 거의 수직 → 기지재가 인장응력을 받음 → 물성 저하

여러 각도로 강화된 판을 적층 하여 복합재료의 물성 설계

열 팽창 계수

- CTE (Coefficient of thermal expansion)
 - □ 고분자는 금속보다 CTE가 크지만, 섬유의 강화로 작아짐
 - □ 섬유의 물성, 강화 각도, 적층 방법에 따라 CTE의 조절 가능

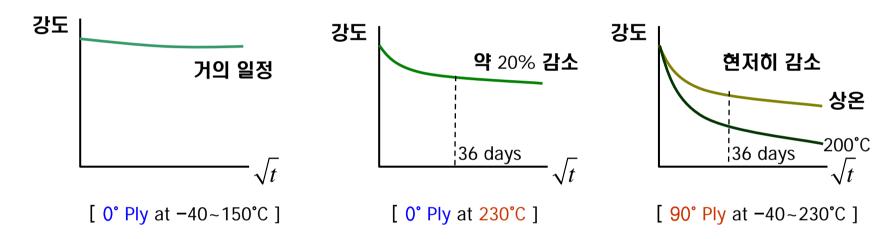


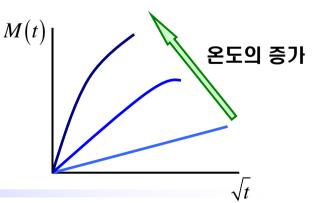

- 0° Ply --- CTE는 섬유의 영향을 받음
 거의 0에 가까움
- 90° Ply --- CTE는 기지재의 영향을 받음 큰 값을 가짐

- [0 / ±45]s의 경우 45°의 비율이 높을수록 CTE 증가
- [90 / ±45]s의 경우 45°의 비율이 높을수록 CTE 감소

수분의 영향

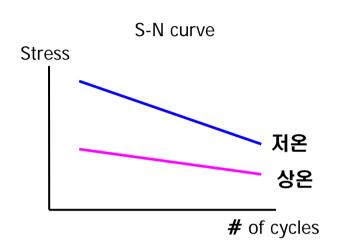
- 기지재의 흡습성
 - □ 플라스틱이 수분에 노출될 경우, 확산에 의해 수분을 흡수
 - □ 초기에는 수분 함유율이 증가하다가 점차 일정해 짐




- 확산도 (D : Diffusivity)
 - □ 수분 함유량의 증가 속도 (G는 확산도와 온도에 따라 결정)
 - □ 적층의 순서 및 각도를 조절하여 낮은 확산도 유도 가능
 - □ 초기에는 양의 기울기를 가지다가 점차 0에 수렴 (G와 유사)
 - □ 온도가 증가하면 확산도 증가

■ 복합재료의 물성 저하

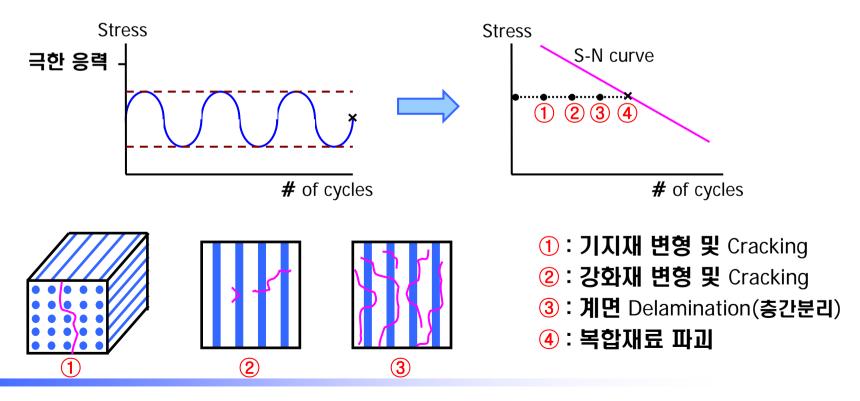
- 무게의 증가
- 기지재의 물성 저하, 계면 접착력 저하
- 금속처럼 수분에 의한 산화 현상은 없음

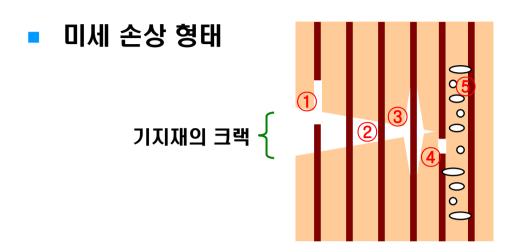

- 온도의 영향
 - □ 온도가 증가하면 수분의 흡수가 빨라짐

온도의 영향

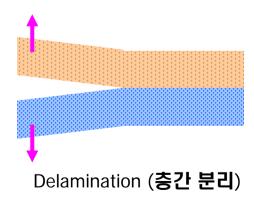
- 저온 특성
 - □ 일반적으로 저온에서 물성이 뛰어남

물성	상온 대비 특징		
비강도	약 2배 증가		
비강성	10~20% 증가		
파괴 Toughness	40% 증가		
叫山 Strain	약간 증가		

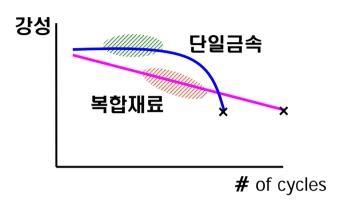


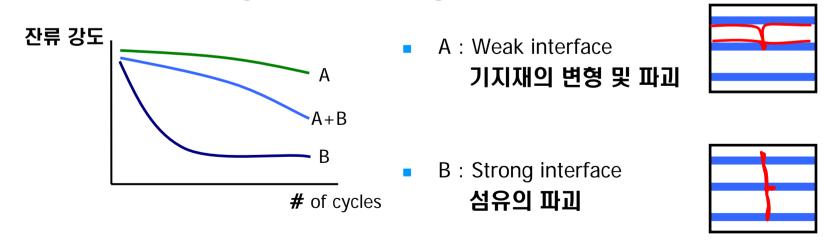

- 고온 특성
 - □ 고분자 기지재는 고온에서 열적 불안정
 - □ 기지재의 분해 발생
 - □ 비강도, 비강성 감소

피로 특성

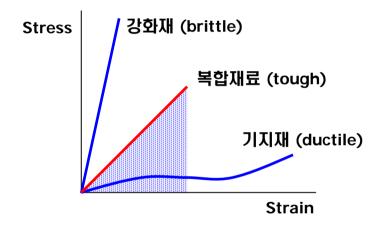

- 피로파괴
 - □ 재료에 반복적인 하중이 가해지면 극한응력에 이르지 않아도 파괴가 발생
 - □ 복합재료는 균열진전이 기지재와 강화재의 계면에 의해 불연속
 - → 일반 금속에 비해 피로 특성이 4~8배 정도 뛰어남

- 1: Fiber pull out
- 2: Fiber bridging
- 3: Fiber/Matrix Debonding
- 4: Fiber failure
- 5 : Matrix cracking

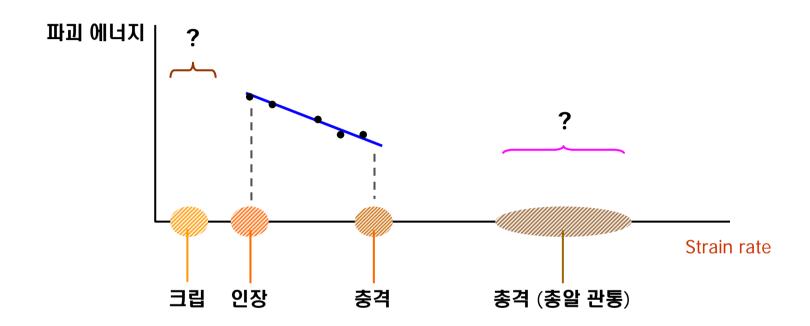

■ 거시 손상 형태


Buckling Delamination

■ 반복 하중에 의한 강도의 저하

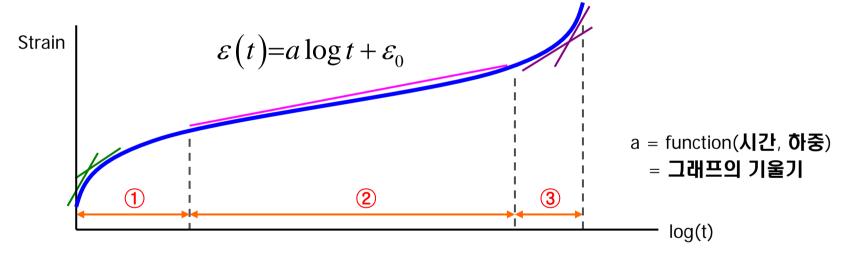

- 단일금속
- 크랙 발생 전에는 강성을 유지하지만, 크랙 발생 후에 급격히 저하
 - 복합재료
- 작은 크랙이 꾸준히 발생하기 때문에, 처음부터 서서히 떨어짐

■ 계면의 접착특성에 의한 파괴 거동


복합재료의 Toughness

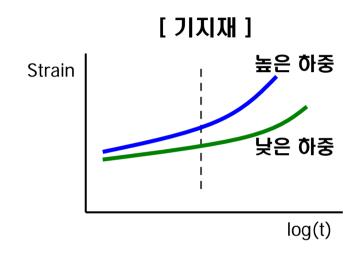
- 복합재료의 Toughness
 - □ 소재가 파괴되는데 필요한 에너지 → Stress-strain 그래프의 아래 면적

- 복합재료는 섬유와 기지재 사이에 다수의 크랙이 발생하여 결국 파괴가 일어남
 - → 강화재보다 낮은 Stress 에서 파괴
 - → 기지재보다 낮은 Strain 에서 파괴


여러가지 물성 테스트

- 크립 실험: Strain이 아주 천천히 증가하는 조건에서의 실험
 - → 실험이 오래 걸림
- 인장 실험: 일반적인 Strain rate에서 실험
- 충격 실험: 인장 실험보다는 큰 Strain rate에서 실험
- 총격 실험: 매우 큰 Strain rate에서 실험
 - → 국방 산업에서 많이 수행

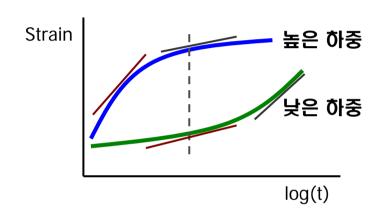
크립 특성

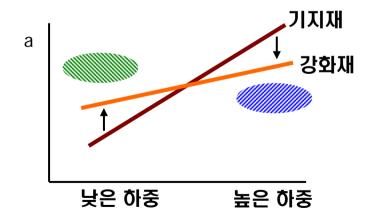

- 크립 (Creep)
 - □ 일정한 하중에 의해 장기간에 걸쳐 발생하는 물성 저하
 - □ 일반적인 크립 그래프

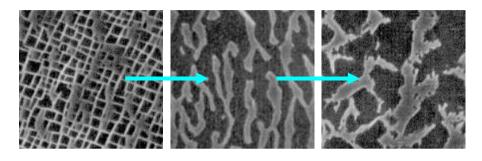
- ①: Transient creep → Strain rate 이 안정화 되는 구간, 점점 감소하여 일정해짐
- ②: Linear creep → Strain rate이 일정한 구간
- ③: Tertiary creep → Strain rate이 급하게 증가하는 구간, 파괴 발생

■ 복합재료의 크립

[강화재]
Strain 높은 하중
낮은 하중


- ▶ 시간이 지나도 기울기가 거의 일정
- 하중이 높을수록 큰 Strain 값을 가짐

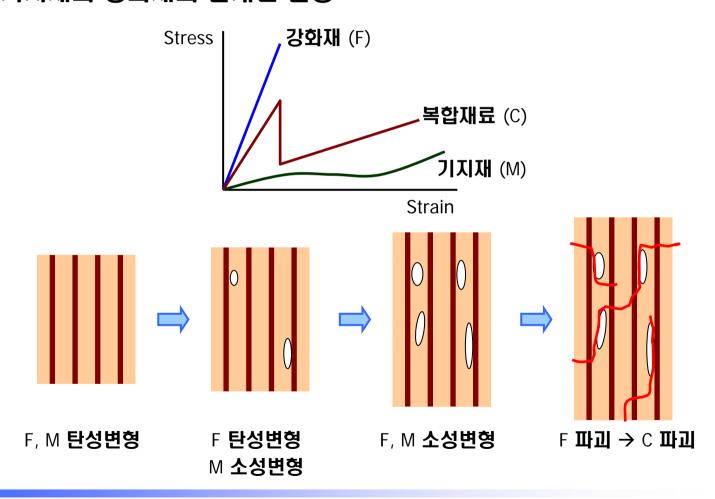

$$\varepsilon(t) = a \log t + \varepsilon_0$$


- 초기에는 기울기가 작지만 점점 급격히 증가
- 하중이 높을수록 큰 Strain 값을 가짐

$$\varepsilon(t) = a \log t + \varepsilon_0$$

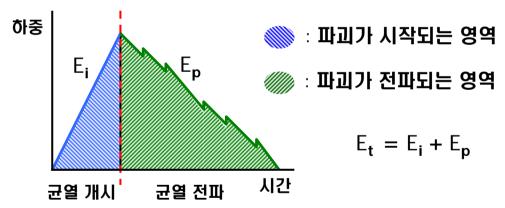
[복합 재료]

시간에 따른 미세 구조의 변화

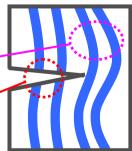

- 높은 하중 : 초기에는 a가 크지만 점점 작아짐
- ▶ 낮은 하중 : 초기에는 a가 작지만 점점 증가함
- 하중에 상관없이,

초기에는 기지재의 영향을 받음 후기에는 강화 섬유의 영향을 받음

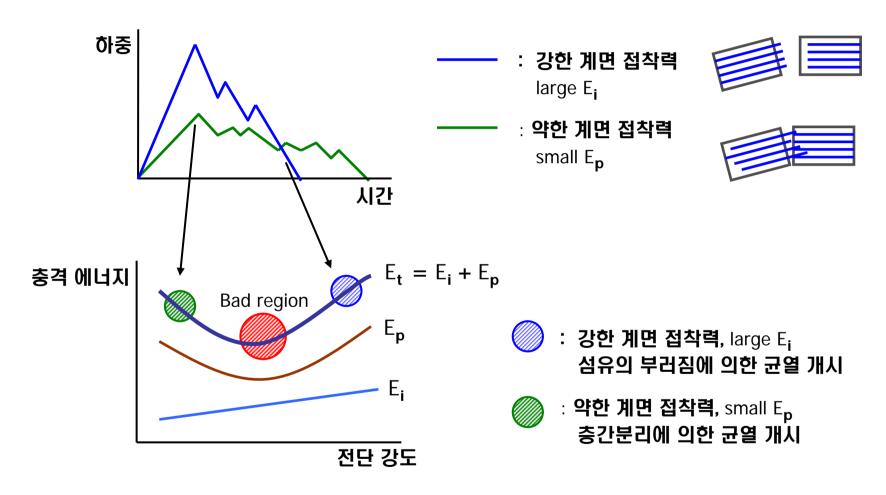
■ 일반 재료와 달리 Linear creep 구간이 없음


복합재료의 인장 특성

기지재와 강화재의 단계별 변형



충격 특성


- 복합재료의 충격 특성
 복합재료는 강도와 충격물성의 절충 설계 가능!
- 충격시험의 하중그래프

- 충격 시 에너지 흡수 메커니즘
 - □ 재료의 변형에 의한 흡수
 - □ 균열에 의한 표면 형성에 따른 흡수

■ 계면의 접착특성에 의한 충격 특성

고분자 복합재료의 제조 공법

제조 공법의 분류

- 예비 성형체 제조
 - □ 시트 몰딩 컴파운드 (SMC)
 - □ 벌크 몰딩 컴파운드 (BMC)
 - □ **프리프레그** (Prepreg)

- 본 성형체 제조
 - □ 핸드 레이업
 - □ 스프레이 업
 - □ 진공백 성형 (Vacuum bag molding)
 - □ 필라멘트 와인딩
 - □ 전자빔 필라멘트 와인딩
 - □ 수지 이송 성형 (RTM)
 - □ 수지 사출 성형 (RIM)
 - □ 압축 성형 (Compression molding)
 - □ 인발 성형 (Pultrusion)
 - □ 열 가소성 수지 성형 공정

Sheet-molding Compound (SMC)

- 공정 특징
 - □ 목적 --- 시트 형태의 성형용 혼합물 제조
 - □ 특징
 - 강화재는 잘린 섬유 로빙을 사용 --- 25~50mm
 - **높은 섬유의 비율** --- 20~35%
 - 완성된 시트는 반 경화된 점토상태의 연한 제품
 - 대량 생산에 유리
 - □응용
 - 완성된 시트를 낱개 혹은 적층 후 고온고압성형을 하여 실제품 완성
 - 접착력이 있는 수지를 함침하여 유연성 있는 박판으로 사용

Bulk Molding Compound (BMC)

- 공정 특징
 - □ 목적 --- 3차원의 벌크 형태 혼합물 제조
 - □ 특징
 - 강화재는 잘린 섬유로빙을 사용 --- 6~12mm
 - 섬유의 비율 --- 15~20%
 - 섬유의 비율이 SMC보다 낮음
 - 매우 긴 장섬유를 사용할 수 없어 SMC보다 강도가 떨어짐
 - 주입 상태는 액상 혼합물이지만 압축, 사출 성형 후에는 완전 경화
 - 고속 대량 생산에 유리
 - □응용
 - 전기 장비, 자동차 부품 등 복잡한 형태의 제품

Prepreg (프리프레그) 제조

- 공정 특징
 - □ 목적 --- 수지가 반경화 된 일방향 섬유보강 테잎 제조
 - □ 특징
 - 강화재는 장섬유 로빙을 사용 --- 커팅으로 원하는 길이 확보
 - 열 경화성 및 열 가소성 수지 모두 사용 가능
 - → 열 경화성 수지 프리프레그는 상온 보관
 - → 열 가소성 수지 프리프레그는 저온 보관
 - 수지와 섬유의 혼합 비율 조절 및 품질관리 용이
 - □ 응용
 - 완성된 시트를 낱개 혹은 적충 후 진공백 성형, RTM을 통해 실제품 완성
 - 항공기의 얇은 외장판(1~2mm)에 사용

Hand Lay-up (핸드 레이업)

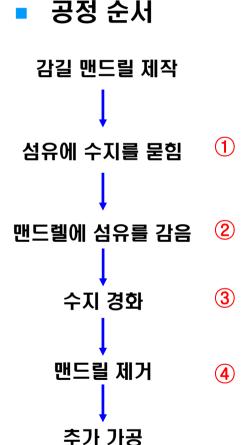
- 공정 특징
 - □ 목적 --- 간단한 형상의 제품 제조
 - □ 특징
 - 가장 오래된 방법
 - 모든 섬유의 형태 사용 가능
 - 적충된 시트의 수로 제품의 두께 결정
 - 롤러로 압착 할 때 섬유의 방향이 흐트러질 가능성
 - 대량 생산에 불리
 - □응용
 - 간단하고 수량이 적은 제품에 많이 응용
 - 보트 외판, 작은 수영장, 특수 종이 제작

Spray-up (스프레이-업)

- 공정 특징
 - □ 목적 --- 핸드 레이업 보다 복잡한 형상 제조
 - □ 특징
 - 핸드 레이업 방법의 자동화
 - 강화재는 짧은 섬유만 가능 --- 10~30 mm
 - 핸드 레이업과 유사
 - 대량 생산에 불리
 - □응용
 - 핸드 레이업으로 제조하는 제품들
 - 보트 외판, 수영장, 큰 덮개, 탱크 용기

Vacuum Bag Molding (진공백 성형)

- 공정 특징
 - □ 목적 --- 3차원 성형품 제조
 - □특징
 - 프리프레그를 적층한 예비성형체 사용
 - 복잡한 형상 제조 가능
 - 대량 생산에 불리
 - □응용
 - 적층판 성형
 - 복잡한 형상이면서 수량이 적은 제품


■ 공정 순서 적층 예비체 준비 탈형용 패브릭, 블리더, 테프론 필름 과 예비체 적충 테두리 실링 진공압 작동 고온, 고압 성형

Compression Molding (압축 성형법)

- 공정 특징
 - □ 목적 --- 거의 2차원 형태의 제품 제조
 - □ 특징
 - 짧은 시간의 성형 공정
 - 최적 성형 공정 확보가 매우 중요
 - 복잡한 2차원 형태 쉽게 제작
 - 3차원 제품 제작 불가
 - 대량 생산에 유리
 - □응용
 - 다양한 2차원 제품
 - 적층판 제작

Filament Winding (필라멘트 와인딩)

- 공정 특징
 - □ 목적 --- 실린더 혹은 구형의 강한 압력용기류 제작
 - □ 특징
 - 길게 이어진 섬유를 감아서 제작
 - → 탄소, 케블라 섬유는 항공기 재료로 사용
 - → 유리 섬유는 군수품에 사용
 - 와인딩 장력, 와인딩 각도, 섬유 종류에 따른 물성 설계
 - 와인딩 각도가 작은 것은 성형이 어려움
 - 제품의 형상이 단조로움
 - □ 응용
 - 파이프, 튜브, 압력 탱크

EB Filament Winding (전자 빔 와인딩)

- 공정 특징
 - □ 목적 --- 강한 압력용기류를 자동화 제작
 - □ 특징
 - 길게 이어진 섬유를 감아서 제작
 - → 일반 Filament Winding과 유사
 - Electric Beam System을 사용하여 신속한 경화 유도
 - 제품 성형의 자동화
 - □응용
 - 대량 생산이 필요한 필라멘트 와인딩 제품의 성형

Resin Transfer Molding (RTM)

- 공정 특징
 - □ 목적 --- 표면이 넓고 복잡한 형상 제품 제작
 - □ 특징
 - 강화재는 스트랜드 매트나 직조 로빙을 사용
 - 촉매의 선택에 따라 상온 경화도 가능
 - 치수 편차가 커서 성형 후에 다듬질 필요
 - 대량 생산에 불리
 - 프리폼의 사용은 구멍, 리브 등의 복잡한 형상 제조에 유리
 - □응용
 - 차량 부품, 캐비닛, 의자, 욕조, 보트

Reaction Injection Molding (RIM)

- 공정 특징
 - □ 목적 --- 복잡한 형상의 제품을 빠르게 사출성형
 - □ 특징
 - 화학적 반응으로 경화되는 두 액체를 사용

```
polyol + isocyanate --> polyurethane
```

- 강화재는 짧은 스트랜드 사용
- 낮은 온도, 낮은 압력에서 성형 --- 성형시간 단축
- □응용
 - 자동차 스포일러, 자동차 판넬

Pultrusion (인발 성형)

- 공정 특징
 - □ 목적 --- 일정한 단면을 가지는 긴 제품 제조
 - □ 특징
 - 강화재는 긴 섬유를 사용
 - **높은 섬유의 비율 --- 30~70%**
 - 단면의 형상이 제한됨
 - 공정 기계의 가격이 높음
 - 정확한 치수의 제품 생산
 - 대량 생산에 유리
 - □ 응용
 - 파이프, 빔 구조물

Thermoplastic Molding Process

- 공정 특징
 - □ 목적 --- 열 가소성 수지를 사용하는 제품 제조
 - □ 특징
 - 예비 경화된 혼합물을 사용
 - 단섬유 사용
 - 압축 성형시 수지의 유동이 좋아서 제품의 형상이 좋음
 - □응용
 - 다양한 제품의 커버로 사용
 - 세탁기 실린더